cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379500 Square array A(n, k) = A249670(A246278(n, k)), read by falling antidiagonals; A249670(n) = A017665(n)*A017666(n), applied to the prime shift array.

Original entry on oeis.org

6, 28, 12, 2, 117, 30, 120, 40, 775, 56, 45, 1080, 1680, 2793, 132, 21, 672, 19500, 7392, 16093, 182, 84, 390, 3960, 137200, 24024, 30927, 306, 496, 176, 43400, 208, 1948584, 55692, 88723, 380, 78, 9801, 5460, 368676, 40392, 5228860, 116280, 137541, 552, 210, 9300, 488125, 17136, 2928926, 69160, 25645860, 209760, 292537, 870
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2025

Keywords

Examples

			The top left corner of the array:
k=|   1      2      3        4      5        6      7          8        9       10
2k|   2      4      6        8     10       12     14         16       18       20
--+---------------------------------------------------------------------------------
1 |   6,    28,     2,     120,    45,      21,    84,       496,      78,     210,
2 |  12,   117,    40,    1080,   672,     390,   176,      9801,    9300,    6552,
3 |  30,   775,  1680,   19500,  3960,   43400,  5460,    488125,   83790,  102300,
4 |  56,  2793,  7392,  137200,   208,  368676, 17136,   6725201,   18392,   10374,
5 | 132, 16093, 24024, 1948584, 40392, 2928926, 50160, 235793305, 4082364, 4924458,
		

Crossrefs

Elementwise product of arrays A341605 and A341606.
Cf. A036690 (leftmost column), A361468 (even bisection gives row 2).

Programs

  • PARI
    up_to = 55;
    A249670(n) = { my(ab = sigma(n)/n); numerator(ab)*denominator(ab); };
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A379500sq(row,col) = A249670(A246278sq(row,col));
    A379500list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A379500sq(col,(a-(col-1))))); (v); };
    v379500 = A379500list(up_to);
    A379500(n) = v379500[n];

Formula

A(n, k) = A341605(n, k) * A341606(n, k).
A(n, k) = A379499(n, k) / (A355925(n, k)^2).

A361467 a(n) = A003961(n) * sigma(A003961(n)), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 12, 30, 117, 56, 360, 132, 1080, 775, 672, 182, 3510, 306, 1584, 1680, 9801, 380, 9300, 552, 6552, 3960, 2184, 870, 32400, 2793, 3672, 19500, 15444, 992, 20160, 1406, 88452, 5460, 4560, 7392, 90675, 1722, 6624, 9180, 60480, 1892, 47520, 2256, 21294, 43400, 10440, 2862, 294030, 16093, 33516, 11400
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (q = NextPrime[p])^e * (q^(e+1) - 1) / (q - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 18 2023 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A361467(n) = { my(u=A003961(n)); (u*sigma(u)); };

Formula

Multiplicative with a(p^e) = q^e * (q^(e+1) - 1) / (q - 1), where q = nextPrime(p).
a(n) = A003961(n) * A003973(n).
a(n) = A064987(A003961(n)).

A361469 a(n) = bigomega(A249670(A003961(n))).

Original entry on oeis.org

0, 3, 3, 3, 4, 4, 4, 7, 3, 7, 3, 4, 4, 5, 7, 6, 4, 6, 5, 7, 7, 6, 4, 6, 4, 5, 7, 5, 6, 8, 3, 9, 6, 7, 8, 6, 4, 6, 7, 11, 4, 8, 6, 4, 7, 5, 5, 7, 4, 5, 5, 3, 5, 8, 5, 9, 8, 9, 3, 8, 4, 6, 7, 7, 8, 7, 6, 7, 5, 9, 3, 8, 6, 5, 7, 6, 7, 8, 5, 10, 6, 7, 5, 6, 8, 7, 9, 10, 4, 10, 8, 5, 6, 6, 9, 10, 4, 7, 6, 5, 5, 6, 6, 7, 11
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2023

Keywords

Comments

Conjecture: There are no 1's in this sequence. If true, it would imply that there are no odd terms in A065997.
The first n with a(n) = 2 is 1684804. Note that A003961(1684804) = 5659641 is so far the only known odd term in A247086.

Crossrefs

Programs

  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A249670(n) = { my(ab = sigma(n)/n); numerator(ab)*denominator(ab); };
    A361469(n) = bigomega(A249670(A003961(n)));

Formula

Showing 1-3 of 3 results.