cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361475 Array read by ascending antidiagonals: A(n, k) = (k^n - 1)/(k - 1), with k >= 2.

Original entry on oeis.org

0, 1, 0, 3, 1, 0, 7, 4, 1, 0, 15, 13, 5, 1, 0, 31, 40, 21, 6, 1, 0, 63, 121, 85, 31, 7, 1, 0, 127, 364, 341, 156, 43, 8, 1, 0, 255, 1093, 1365, 781, 259, 57, 9, 1, 0, 511, 3280, 5461, 3906, 1555, 400, 73, 10, 1, 0, 1023, 9841, 21845, 19531, 9331, 2801, 585, 91, 11, 1, 0
Offset: 0

Views

Author

Stefano Spezia, Mar 13 2023

Keywords

Examples

			The array begins:
   0,  0,  0,   0,   0, ...
   1,  1,  1,   1,   1, ...
   3,  4,  5,   6,   7, ...
   7, 13, 21,  31,  43, ...
  15, 40, 85, 156, 259, ...
  ...
		

Crossrefs

Cf. A003992, A361291 (k=2*n+1), A361476 (antidiagonal sums).
Cf. A000225 (k=2), A003462 (k=3), A002450 (k=4), A003463 (k=5), A003464 (k=6), A023000 (k=7), A023001 (k=8), A002452 (k=9), A002275 (k=10), A016123 (k=11).

Programs

  • Mathematica
    A[n_,k_]:=(k^n-1)/(k-1); Flatten[Table[A[n-k+2,k],{n,0,10},{k,2,n+2}]]

Formula

E.g.f. of column k: exp(x)*(exp((k-1)*x) - 1)/(k - 1).
E.g.f. of column k: 2*exp((k+1)*x/2)*sinh((k-1)*x/2)/(k - 1).
A(n, k) = Sum_{i=0..n-1} k^i.

A379588 Antidiagonal sums of the array A379587.

Original entry on oeis.org

0, 1, 11, 84, 642, 5633, 59021, 736944, 10839316, 185361065, 3637063343, 80939054884, 2023405966486, 56362728831929, 1736960568923505, 58853395571312176, 2180579093801111176, 87921539854223957169, 3841160785119756991059
Offset: 0

Views

Author

Stefano Spezia, Dec 26 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A379587[n_,k_]:=(k^n-1)^2/(k-1); a[n_]:=Sum[A379587[n-k+2,k],{k,2,n+2}]; Array[a,15,0]

Formula

a(n) = Sum_{k=2..n+2} (k^(n-k+2) - 1)^2/(k - 1).
Showing 1-2 of 2 results.