cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361476 Antidiagonal sums of A361475.

Original entry on oeis.org

0, 1, 4, 12, 34, 99, 308, 1040, 3820, 15197, 65060, 297828, 1449742, 7468527, 40555732, 231335944, 1381989864, 8623700793, 56078446596, 379233142780, 2662013133274, 19362917621979, 145719550012276, 1133023004941248, 9090156910550084, 75161929739797493, 639793220877941476
Offset: 0

Views

Author

Stefano Spezia, Mar 13 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
    add( (k^(n-k+2) - 1)/(k - 1),k=2..n+2)
    end proc:
    map(f, [$0..30]); # Robert Israel, Nov 12 2024
  • Mathematica
    A361475[n_,k_]:=(k^n-1)/(k-1); a[n_]:=Sum[A361475[n-k+2,k],{k,2,n+2}]; Array[a,27,0]

Formula

a(n) = Sum_{k=2..n+2} (k^(n-k+2) - 1)/(k - 1).
a(n) ~ A026898(n).
a(n) = Sum_{k=0..n} k * A104878(n,k). - Alois P. Heinz, Dec 05 2023

A379587 Array read by ascending antidiagonals: A(n, k) = (k^n - 1)^2/(k - 1), with k >= 2.

Original entry on oeis.org

0, 1, 0, 9, 2, 0, 49, 32, 3, 0, 225, 338, 75, 4, 0, 961, 3200, 1323, 144, 5, 0, 3969, 29282, 21675, 3844, 245, 6, 0, 16129, 264992, 348843, 97344, 9245, 384, 7, 0, 65025, 2389298, 5589675, 2439844, 335405, 19494, 567, 8, 0, 261121, 21516800, 89467563, 61027344, 12090125, 960000, 37303, 800, 9, 0
Offset: 0

Views

Author

Stefano Spezia, Dec 26 2024

Keywords

Examples

			The array begins as:
    0,     0,      0,       0,        0,        0, ...
    1,     2,      3,       4,        5,        6, ...
    9,    32,     75,     144,      245,      384, ...
   49,   338,   1323,    3844,     9245,    19494, ...
  225,  3200,  21675,   97344,   335405,   960000, ...
  961, 29282, 348843, 2439844, 12090125, 47073606, ...
  ...
		

Crossrefs

Cf. A027620, A060867 (k=2), A060868 (k=3), A060869 (k=4), A060870 (k=5), A060871 (k=7), A361475, A379588 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=(k^n-1)^2/(k-1); Table[A[n-k+2,k],{n,0,9},{k,2,n+2}]//Flatten

Formula

G.f. of column k: (1 - k)*x*(1 + k*x)/((1 - x)*(1 - k*x)*(1 - k^2*x)).
E.g.f. of column k: exp(x)*(1 - 2*exp((k-1)*x) + exp((k^2-1)*x))/(k - 1).
A(2, n) = A027620(n-2) for n > 1.
Showing 1-2 of 2 results.