A361509 a(n) = smallest Fibonacci number F(k) such that F(k) + F(n) is a prime, or -1 if no such F(k) exists.
2, 1, 1, 0, 0, 0, 3, 0, 2, 3, 34, 0, 5, 0, 2, 3, 34, 0, 987, 46368, 2584, 3, 2, 0, 13, 144
Offset: 0
Programs
-
Maple
with(combinat): a:=[]; b:=[]; for n from 0 to 25 do k:=0; t1:=fibonacci(n); while not isprime( fibonacci(k)+t1) do k:=k+1; od: a:=[op(a),fibonacci(k)]; b:=[op(b),k]; od: a; # A361509 b; # A361510
-
Mathematica
a[n_] := Module[{fn = Fibonacci[n], k = 0}, While[! PrimeQ[fn + Fibonacci[k]], k++]; Fibonacci[k]]; Array[a, 26, 0] (* Amiram Eldar, Mar 30 2023 *)
-
PARI
a(n) = my(k=0, fn=fibonacci(n)); while (!isprime(fn+fibonacci(k)), k++); fibonacci(k); \\ Michel Marcus, Mar 30 2023
Formula
Extensions
Edited by N. J. A. Sloane, Mar 30 2023
Comments