A361510 a(n) = smallest k >= 0 such that Fibonacci(k) + Fibonacci(n) is a prime, or -1 if no such k exists.
3, 1, 1, 0, 0, 0, 4, 0, 3, 4, 9, 0, 5, 0, 3, 4, 9, 0, 16, 24, 18, 4, 3, 0, 7, 12
Offset: 0
Programs
-
Maple
See A361509.
-
Mathematica
a[n_] := Module[{fn = Fibonacci[n], k = 0}, While[! PrimeQ[fn + Fibonacci[k]], k++]; k]; Array[a, 26, 0] (* Amiram Eldar, Mar 30 2023 *)
-
PARI
a(n) = my(k=0, fn=fibonacci(n)); while (!isprime(fn+fibonacci(k)), k++); k; \\ Michel Marcus, Mar 30 2023
Formula
Extensions
Edited by N. J. A. Sloane, Mar 30 2023
Comments