A361518 Decimal expansion of arccoth(Pi).
3, 2, 9, 7, 6, 5, 3, 1, 4, 9, 5, 6, 6, 9, 9, 1, 0, 7, 6, 1, 7, 8, 6, 3, 4, 1, 7, 5, 5, 5, 2, 1, 8, 6, 0, 4, 2, 7, 0, 1, 3, 7, 3, 9, 1, 1, 4, 0, 6, 9, 2, 4, 1, 4, 4, 0, 2, 9, 0, 8, 3, 5, 4, 7, 6, 2, 0, 0, 6, 2, 8, 3, 7, 3, 1, 5, 6, 7, 1, 7, 2, 8, 6, 1, 1, 8, 2, 6, 3, 6, 4, 8, 6, 3, 6, 2, 7, 1, 4, 0, 8, 0, 1, 6, 5
Offset: 0
Examples
0.329765314956699107617863417555218604270137391140692414402908354762...
References
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 31, page 291.
Links
- Michael I. Shamos, A catalog of the real numbers (2011).
Programs
-
Mathematica
RealDigits[ArcCoth[Pi], 10, 105][[1]]
-
PARI
atanh(1/Pi) \\ Michel Marcus, Mar 15 2023
Formula
Equals arctanh(1/Pi).
Equals (log(1 + 1/Pi) - log(1 - 1/Pi))/2.
Equals Sum_{k>=0} (Pi^(-2k - 1))/(2k + 1).
Equals Integral_{x=1..(1 + 1/Pi)} 1/(2x - x^2) dx.