A201631 a(n) is the number of Fibonacci meanders of length m*n and central angle 360/m degrees where m = 2.
1, 3, 6, 13, 30, 70, 167, 405, 992, 2450, 6090, 15214, 38165, 96069, 242530, 613811, 1556856, 3956316, 10070871, 25674210, 65541142, 167517654, 428635032, 1097874434, 2814611701, 7221917871, 18544968768, 47655572191, 122544150258, 315313433594, 811792614547
Offset: 1
Keywords
Examples
a(3) = 6 = card({100001, 100100, 110000, 111001, 111100, 111111}).
Links
- Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, and Vincent Vajnovszki, Enumeration of Dyck paths with air pockets, arXiv:2202.06893 [cs.DM], 2022-2023.
- Peter Luschny, Fibonacci meanders.
Programs
-
Maple
A201631 := n -> add(A202411(k),k=0..2*n-1): seq(A201631(i),i=1..9); # Alternative, using the g.f. of Baril et al.: S := (x^2 - x + 1 - R)/((x - 1)*(x^2 - x - 1 + R)*R): R := (((x - 3)*x + 1)*(x^2 + x + 1))^(1/2): ser := series(S, x, 33): seq(coeff(ser, x, n), n = 1..31); # Peter Luschny, Mar 16 2023 # Using a recurrence: a := proc(n) option remember; if n < 5 then return [0, 1, 3, 6, 13][n + 1] fi; (n*(2*n - 1)*(2*n - 3)*(n - 5)*a(n - 5) - (n - 4)*(2*n - 1)^2*(3*n - 5)*a(n - 4) + (2*n - 5)*(n - 3)*(2*n^2 - 3*n + 2)*a(n - 3) - (2*n - 3)*(n - 2)*(2*n^2 - 3*n + 5)*a(n - 2) + (3*n - 4)*(2*n - 1)*(2*n - 5)*(n - 1)*a(n - 1))/(n*(2*n - 3)*(2*n - 5)*(n - 1)) end: seq(a(n), n = 1..31); # Peter Luschny, Mar 16 2023
-
Mathematica
a[n_] := Sum[A202411[k], {k, 0, 2 n - 1}]; Array[a, 31] (* Jean-François Alcover, Jun 29 2019 *)
Formula
a(n) = Sum_{k=0..2n-1} A202411(k).
a(n) = [x^n] (x^2 - x + 1 - R)/((x - 1)*(x^2 - x - 1 + R) * R), where R = (((x - 3)*x + 1)*(x^2 + x + 1))^(1/2). (This is Theorem 21 in Baril et al.) - Peter Luschny, Mar 16 2023
Comments