cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A361573 Expansion of e.g.f. exp(x^3/(6 * (1 - x)^3)).

Original entry on oeis.org

1, 0, 0, 1, 12, 120, 1210, 13020, 152880, 1975960, 28148400, 440470800, 7525441000, 139375236000, 2778421245600, 59239029249400, 1343609515248000, 32274288638592000, 818014942318974400, 21809788600885084800, 610079100418595808000, 17863467401461938256000
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x^3/(6(1-x)^3)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 20 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^3/(6*(1-x)^3))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/6*sum(j=3, i, (-1)^(j-3)*j*binomial(-3, j-3)*v[i-j+1]/(i-j)!)); v;

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n-1,n-3*k)/(6^k * k!).
a(0) = 1; a(n) = ((n-1)!/6) * Sum_{k=3..n} (-1)^(k-3) * k * binomial(-3,k-3) * a(n-k)/(n-k)!.
a(n) ~ 2^(-9/8) * exp(-1/24 + 5*2^(1/4)*n^(1/4)/48 - sqrt(2*n)/4 + 2^(7/4)*n^(3/4)/3 - n) * n^(n - 1/8) * (1 - 1203*2^(3/4)/(10240*n^(1/4))). - Vaclav Kotesovec, Mar 29 2023

A373758 Expansion of e.g.f. exp(x^4/(24 * (1 - x)^2)).

Original entry on oeis.org

1, 0, 0, 0, 1, 10, 90, 840, 8435, 91980, 1089900, 13998600, 194184375, 2897744850, 46335539250, 790936146000, 14361717995625, 276491756541000, 5626652076045000, 120696581303298000, 2722068344529158625, 64392333741216731250, 1594243471325576321250
Offset: 0

Views

Author

Seiichi Manyama, Jun 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\4, binomial(n-2*k-1, n-4*k)/(24^k*k!));
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/24*sum(j=4, i, j*(j-3)*v[i-j+1]/(i-j)!)); v;

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} binomial(n-2*k-1,n-4*k)/(24^k * k!).
a(0) = 1; a(n) = ((n-1)!/24) * Sum_{k=4..n} k * (k-3) * a(n-k)/(n-k)!.

A373759 Expansion of e.g.f. exp(x^4/(24 * (1 - x)^3)).

Original entry on oeis.org

1, 0, 0, 0, 1, 15, 180, 2100, 25235, 319410, 4299750, 61815600, 950524575, 15633092475, 274749725250, 5151569172750, 102831791687625, 2179782464359500, 48933251188321500, 1160002995644493000, 28956069155772383625, 759014081927743516875
Offset: 0

Views

Author

Seiichi Manyama, Jun 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\4, binomial(n-k-1, n-4*k)/(24^k*k!));
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/24*sum(j=4, i, j*binomial(j-2, j-4)*v[i-j+1]/(i-j)!)); v;

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} binomial(n-k-1,n-4*k)/(24^k * k!).
a(0) = 1; a(n) = ((n-1)!/24) * Sum_{k=4..n} k * binomial(k-2,k-4) * a(n-k)/(n-k)!.
Showing 1-3 of 3 results.