cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A375172 Expansion of e.g.f. exp( x^2/(1-x)^3 ) / (1-x).

Original entry on oeis.org

1, 1, 4, 30, 276, 2940, 36120, 507360, 8032080, 141235920, 2725107840, 57151211040, 1293129351360, 31376876731200, 812303844992640, 22338850742208000, 650081402588217600, 19951131574037664000, 643805564147435289600, 21785365857810973017600
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x^2/(1-x)^3)/(1-x)))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, binomial(n+k, n-2*k)/k!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n+k,n-2*k)/k!.

A361594 Expansion of e.g.f. exp( (x / (1-x))^2 ) / (1-x).

Original entry on oeis.org

1, 1, 4, 24, 180, 1620, 17040, 204960, 2770320, 41504400, 681791040, 12173293440, 234555773760, 4847900016960, 106932303878400, 2506094618227200, 62165827044921600, 1626693694039814400, 44767280999939097600, 1292282276155782912000
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[Binomial[n,2*k]/k!, {k,0,n/2}], {n,0,20}] (* Vaclav Kotesovec, Mar 17 2023 *)
    With[{nn=20},CoefficientList[Series[Exp[(x/(1-x))^2]/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 29 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((x/(1-x))^2)/(1-x)))

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n,2*k)/k!.
From Vaclav Kotesovec, Mar 17 2023: (Start)
a(n) = (3*n - 2)*a(n-1) - 3*(n-2)*(n-1)*a(n-2) + (n-2)^2*(n-1)*a(n-3).
a(n) ~ 2^(-1/6) * 3^(-1/2) * exp(1/3 - 2^(-1/3)*n^(1/3) + 3*2^(-2/3)*n^(2/3) - n) * n^(n + 1/6) * (1 + 11*2^(1/3)/(27*n^(1/3)) - 79/(3645*2^(1/3)*n^(2/3))). (End)

A375226 Expansion of e.g.f. exp( (x / (1-x))^3 ) / (1-x)^2.

Original entry on oeis.org

1, 2, 6, 30, 240, 2520, 30600, 413280, 6168960, 101666880, 1842825600, 36483955200, 782548905600, 18048500870400, 444816333561600, 11656620213638400, 323500679915212800, 9475966585948262400, 292101319958063616000, 9450373008137757696000
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((x/(1-x))^3)/(1-x)^2))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, binomial(n+1, n-3*k)/k!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n+1,n-3*k)/k!.

A375227 Expansion of e.g.f. exp( (x / (1-x))^3 ) / (1-x)^3.

Original entry on oeis.org

1, 3, 12, 66, 504, 5040, 60840, 839160, 12882240, 217607040, 4018896000, 80691811200, 1750850640000, 40809559190400, 1016150162227200, 26898872647046400, 753882642267955200, 22291971504503500800, 693356807039126630400
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[(x/(1-x))^3]/(1-x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 04 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((x/(1-x))^3)/(1-x)^3))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, binomial(n+2, n-3*k)/k!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n+2,n-3*k)/k!.
Showing 1-4 of 4 results.