A361610 a(n) = 5^n*(n+1)*(4*n^2+14*n+3)/3.
1, 70, 1175, 13500, 128125, 1081250, 8421875, 61875000, 434765625, 2949218750, 19443359375, 125195312500, 790283203125, 4904785156250, 29998779296875, 181152343750000, 1081695556640625, 6394958496093750, 37471771240234375, 217819213867187500, 1257038116455078125
Offset: 0
Links
- Winston de Greef, Table of n, a(n) for n = 0..1408
- Project Euler, Problem 831. Triple Product
- Index entries for linear recurrences with constant coefficients, signature (20,-150,500,-625).
Programs
-
Mathematica
LinearRecurrence[{20,-150,500,-625},{1,70,1175,13500},30] (* Harvey P. Dale, Aug 29 2024 *)
-
Python
def A361610(n): return 5**n*(n*(n*(4*n + 18) + 17) + 3)//3 # Chai Wah Wu, Mar 17 2023
Formula
G.f.: (1 + 50*x - 75*x^2) / (5*x - 1)^4.
a(n) = 20*a(n-1) -150*a(n-2) +500*a(n-3) -625*a(n-4).
D-finite with recurrence n*(4*n^2+6*n-7)*a(n) -5*(n+1)*(4*n^2+14*n+3)*a(n-1)=0.
Comments