A361634 Integers whose number of square divisors is coprime to the number of their nonsquare divisors.
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 48, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94
Offset: 1
Keywords
Examples
48 has 3 square divisors (1, 4, and 16) and 7 nonsquare ones. Consequently, gcd(3,7)=1, thus 48 is a term.
Crossrefs
Programs
-
Mathematica
Select[Range[100],CoprimeQ[Total@(Boole/@IntegerQ/@Sqrt/@Divisors[#]),DivisorSigma[0,#]-Total@(Boole/@IntegerQ/@Sqrt/@Divisors[#])]&]
-
PARI
for(n=1, 100, a=divisors(n); c=0; for(i=1, #a, issquare(a[i])&&c++); gcd(#a-c, c)==1&&print1(n, ", "))
-
PARI
isok(n) = gcd(numdiv(n), numdiv(sqrtint(n/core(n))))==1 \\ Andrew Howroyd, Mar 19 2023
Comments