cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361649 a(n) = (1+n)*(2*a(n-1) - (n-2)*a(n-2)) with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 6, 44, 380, 3768, 42112, 523072, 7141248, 106209920, 1708188416, 29525850624, 545607622144, 10730032423936, 223691600732160, 4926284479250432, 114255071320260608, 2783085758131765248, 71023717127647854592, 1894699527341113999360, 52730415074075898937344
Offset: 0

Views

Author

Keywords

Crossrefs

For m=1 the formula gives the sequence A052852.

Programs

  • Maple
    # For recursion:
    N:=20;a[0]:=1;a[1]:=1;for n from 1 to N do
    a[n+1]:=(n+2)*(2*a[n]-(n-1)*a[n-1]);od;
    # For closed form:
    C := binomial:
    a := n -> `if`(n=0, 1, add(C(n-1, i)*C(n+1, n-i)*(n-i)!*2^(i-1), i = 0..n-1)):
    seq(a(n), n = 0..20);
  • PARI
    memo=Map([0, 1; 1, 1]);
    a(n)=if(mapisdefined(memo, n),mapget(memo, n), mapput(memo, n, (n+1)* (2*a(n-1) - (n-2)*a(n-2))); a(n)); \\ Winston de Greef, Mar 20 2023

Formula

a(n) = (m+n-1)*(2*a(n-1) - (n-2)*a(n-2)) where m = 2.
a(n) = Sum_{i=0..n-1} binomial(n-1,i) * binomial(n+m-1,n-i)*(n-i)!*m^(i-1) where m = 2 for n >= 1.
E.g.f.: (1+x^2)*exp(2/(1-x))/(4*(1-x)^2*exp(2))+3/4. - Alois P. Heinz, Mar 19 2023
a(n) ~ 2^(-9/4) * exp(2*sqrt(2*n) - n - 1) * n^(n + 3/4). - Vaclav Kotesovec, Mar 20 2023