cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361528 a(n) = (2+n)*(2*a(n-1) - (n-2)*a(n-2)) with a(0)=a(1)=1.

Original entry on oeis.org

1, 1, 8, 75, 804, 9681, 129168, 1889379, 30037500, 515342817, 9484627608, 186305208219, 3888697965012, 85920579594225, 2002828537732896, 49107722192594739, 1263165207424720812, 34004577057249890241, 955970215914084949800, 28011115058953357075563, 853924857091970071203972
Offset: 0

Views

Author

Keywords

Crossrefs

For m=1 the formula gives the sequence A052852.
Cf. A288268. For m=2 the formula gives the sequence A361649.

Programs

  • Maple
    # For recursion:
    N:=10;a[0]:=1;a[1]:=1;for n from 1 to N do
    a[n+1]:=(n+3)*(2*a[n]-(n-1)*a[n-1]);od;
    # For closed form:
    C := binomial:
    a := n -> `if`(n=0, 1, add(C(n-1, i)*C(n+2, n-i)*(n-i)!*3^(i-1), i = 0..n-1)):
    seq(a(n), n = 0..20);
    # Alternative:
    a := n -> `if`(n=0, 1, (n + 2)!*hypergeom([1 - n], [3], -3) / 6):
    seq(simplify(a(n)), n = 0..20); # Peter Luschny, Mar 23 2023
  • Mathematica
    nmax = 20; CoefficientList[Series[23/27 + (4 + 3*x + 2*x^3)*E^(3*x/(1 - x))/(27*(1 - x)^3), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Mar 23 2023 *)
  • PARI
    a(n) = if(n==0, 1, my(m=3); sum(i=0, n-1, binomial(n-1, i)*binomial(n+m-1, n-i)*(n-i)!*m^(i-1))) \\ Andrew Howroyd, Mar 23 2023

Formula

a(n) = (m+n-1)*(2*a(n-1) - (n-2)*a(n-2)) where m=3, a(0)=a(1)=1.
a(n) = Sum_{i=0..n-1} binomial(n-1,i) * binomial(n+m-1,n-i)*(n-i)!*m^(i-1) where m = 3 for n >= 1.
a(n) = (n + 2)!*hypergeom([1 - n], [3], -3) / 6 for n >= 1. - Peter Luschny, Mar 23 2023
From Vaclav Kotesovec, Mar 23 2023: (Start)
E.g.f.: 23/27 + (4 + 3*x + 2*x^3) * exp(3*x/(1-x)) / (27*(1-x)^3).
a(n) ~ exp(2*sqrt(3*n) - n - 3/2) * n^(n + 5/4) / (sqrt(2) * 3^(9/4)). (End)

Extensions

Terms a(12) and beyond from Andrew Howroyd, Mar 23 2023

A377058 Triangle of generalized Stirling numbers of the lower level of the hierarchy (case m=2).

Original entry on oeis.org

1, 5, 1, 32, 11, 1, 248, 113, 18, 1, 2248, 1230, 263, 26, 1, 23272, 14534, 3765, 505, 35, 1, 270400, 186992, 55654, 9115, 865, 45, 1, 3479744, 2612000, 865186, 163779, 19110, 1372, 56, 1, 49079936, 39434448, 14235388, 3013164, 408569, 36288, 2058, 68, 1
Offset: 0

Views

Author

Keywords

Comments

These numbers are a subset of the generalized Stirling numbers introduced in A370518. Therefore, we assume them to be numbers of the lower level of hierarchy with respect to A370518.

Examples

			[0]           1;
[1]           5,          1;
[2]          32,         11,         1;
[3]         248,        113,        18,        1;
[4]        2248,       1230,       263,       26,       1;
[5]       23272,      14534,      3765,      505,      35,      1;
[6]      270400,     186992,     55654,     9115,     865,     45,     1;
[7]     3479744,    2612000,    865186,   163779,   19110,   1372,    56,    1;
[8]    49079936,   39434448,  14235388,  3013164,  408569,  36288,  2058,   68,    1;
		

Crossrefs

A361649 (row sums).
Triangle for m=0: A130534.
Triangle for m=1: A376863.

Programs

  • Maple
    T := (m,n,k) -> add(add(Stirling1(n-j,k)*binomial(n+m,i)*binomial(n,j)*binomial(j,i)*i!*m^(j-i), j=i..n), i=0..n): m:=2: seq(seq(T(m,n,k), k=0..n), n=0..10);

Formula

T(m, n, k) = Sum_{i=0..n} Sum_{j=i..n} Stirling1(n-j, k)*binomial(n+m, i)*binomial(n, j)* binomial(j, i)*i!*m^(j-i), for m = 2.
Showing 1-2 of 2 results.