A361656 Number of odd-length integer partitions of n with integer mean.
0, 1, 1, 2, 1, 2, 4, 2, 1, 9, 8, 2, 13, 2, 16, 51, 1, 2, 58, 2, 85, 144, 57, 2, 49, 194, 102, 381, 437, 2, 629, 2, 1, 956, 298, 2043, 1954, 2, 491, 2293, 1116, 2, 4479, 2, 6752, 14671, 1256, 2, 193, 8035, 4570, 11614, 22143, 2, 28585, 39810, 16476, 24691, 4566
Offset: 0
Keywords
Examples
The a(1) = 1 through a(10) = 8 partitions (A = 10): 1 2 3 4 5 6 7 8 9 A 111 11111 222 1111111 333 22222 321 432 32221 411 441 33211 522 42211 531 43111 621 52111 711 61111 111111111 For example, the partition (3,3,2,1,1) has length 5 and mean 2, so is counted under a(10).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&IntegerQ[Mean[#]]&]],{n,0,30}]
-
PARI
a(n)=if(n==0, 0, sumdiv(n, d, if(d%2, polcoef(1/prod(k=1, d, 1 - x^k + O(x^(n-d+1))), n-d)))) \\ Andrew Howroyd, Mar 24 2023
Comments