cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A361658 Constant term in the expansion of (1 + x^3 + y^3 + z^3 + 1/(x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 121, 841, 3361, 10081, 25201, 55441, 194041, 1287001, 7927921, 38438401, 152312161, 516079201, 1627691521, 5745472321, 25999820401, 133086258481, 651284938921, 2860955078521, 11312609403481, 42039298455001, 158864460354601, 658342633033801
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*Sum[1/(k!^3 * (3*k)! * (n-6*k)!), {k, 0, n/6}], {n, 0, 30}] (* Vaclav Kotesovec, Mar 20 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n\6, 1/(k!^3*(3*k)!*(n-6*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/6)} 1/(k!^3 * (3*k)! * (n-6*k)!) = Sum_{k=0..floor(n/6)} binomial(n,6*k) * A001421(k).
From Vaclav Kotesovec, Mar 20 2023: (Start)
Recurrence: (n-4)*(n-2)*n^3*a(n) = (6*n^5 - 45*n^4 + 112*n^3 - 123*n^2 + 68*n - 15)*a(n-1) - 3*(n-1)*(5*n^4 - 40*n^3 + 111*n^2 - 132*n + 59)*a(n-2) + 2*(n-2)*(n-1)*(10*n^3 - 75*n^2 + 181*n - 144)*a(n-3) - (n-3)*(n-2)*(n-1)*(15*n^2 - 90*n + 133)*a(n-4) + 3*(n-4)*(n-3)*(n-2)*(n-1)*(2*n - 7)*a(n-5) + 1727*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6).
a(n) ~ (1 + 2*sqrt(3))^(n + 3/2) / (4 * 3^(1/4) * Pi^(3/2) * n^(3/2)). (End)

A361699 Constant term in the expansion of (1 + x^3 + y^3 + 1/(x*y))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 21, 121, 421, 1121, 2521, 6301, 23101, 99001, 386101, 1301301, 3943941, 11779041, 38241841, 136988041, 504616441, 1793870941, 6061831441, 19923689941, 66139128441, 227052188441, 800641330721, 2831644750221, 9870443816221, 33869987735221
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k,k] * Binomial[5*k,2*k] * Binomial[n,5*k], {k,0,n/5}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = sum(k=0, n\5, binomial(2*k, k)*binomial(5*k, 2*k)*binomial(n, 5*k));

Formula

a(n) = Sum_{k=0..floor(n/5)} binomial(2*k,k) * binomial(5*k,2*k) * binomial(n,5*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: 3*n^2*(3*n - 10)*(3*n - 5)*a(n) = 3*(45*n^4 - 270*n^3 + 510*n^2 - 375*n + 104)*a(n-1) - 45*(n-1)*(6*n^3 - 36*n^2 + 67*n - 40)*a(n-2) + 15*(n-2)*(n-1)*(18*n^2 - 90*n + 109)*a(n-3) - 135*(n-3)^2*(n-2)*(n-1)*a(n-4) + 3152*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ sqrt(c) * (1 + 5/3^(3/5))^n / (Pi * n), where c = 0.8011502211360696582191471740430432783906089377204901279920664641344364478... is the real root of the equation -2483776 + 28284375*c - 141840000*c^2 + 337500000*c^3 - 405000000*c^4 + 194400000*c^5 = 0. (End)

A361700 Constant term in the expansion of (1 + x^4 + y^4 + 1/(x*y))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 31, 211, 841, 2521, 6301, 13861, 30691, 90091, 360361, 1501501, 5645641, 18749641, 56063281, 157520641, 445836901, 1368402421, 4638690211, 16511900791, 58059667051, 195211574251, 625463703151, 1942351017751, 6016826006101, 19113287111101
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k,k] * Binomial[6*k,2*k] * Binomial[n,6*k], {k,0,n/6}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = sum(k=0, n\6, binomial(2*k, k)*binomial(6*k, 2*k)*binomial(n, 6*k));

Formula

a(n) = Sum_{k=0..floor(n/6)} binomial(2*k,k) * binomial(6*k,2*k) * binomial(n,6*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: (n-3)*n^2*(2*n - 9)*(2*n - 3)*a(n) = (24*n^5 - 240*n^4 + 836*n^3 - 1257*n^2 + 843*n - 220)*a(n-1) - (n-1)*(60*n^4 - 600*n^3 + 2094*n^2 - 3051*n + 1600)*a(n-2) + (n-2)*(n-1)*(80*n^3 - 720*n^2 + 2076*n - 1935)*a(n-3) - (n-3)*(n-2)*(n-1)*(60*n^2 - 420*n + 719)*a(n-4) + 24*(n-4)^2*(n-3)*(n-2)*(n-1)*a(n-5) + 725*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6).
a(n) ~ sqrt(3/2 + 2^(1/3) + 1/(3*2^(1/3))) * (1 + 3/2^(1/3))^n / (2*Pi*n). (End)

A361705 Constant term in the expansion of (1 + w^4 + x^4 + y^4 + z^4 + 1/(w*x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1681, 15121, 75601, 277201, 831601, 2162161, 5045041, 10810801, 54054001, 592191601, 5035670641, 31553973361, 157346607601, 660308770801, 2420415874801, 7951853614321, 24853781309281, 91246800876001, 497098157556001, 3346262924004001
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(4*k)!/k!^4 * Binomial[8*k,4*k] * Binomial[n,8*k], {k,0,n/8}], {n,0,30}] (* Vaclav Kotesovec, Mar 25 2023 *)
  • PARI
    a(n) = sum(k=0, n\8, (4*k)!/k!^4*binomial(8*k, 4*k)*binomial(n, 8*k));

Formula

a(n) = Sum_{k=0..floor(n/8)} (4*k)!/k!^4 * binomial(8*k,4*k) * binomial(n,8*k).
a(n) ~ 5^(n+2) / (2^(5/2) * Pi^2 * n^2). - Vaclav Kotesovec, Mar 25 2023
Showing 1-4 of 4 results.