A361657
Constant term in the expansion of (1 + x^2 + y^2 + 1/(x*y))^n.
Original entry on oeis.org
1, 1, 1, 1, 13, 61, 181, 421, 1261, 5293, 21421, 73261, 232321, 789361, 2954953, 11127481, 39961741, 139908301, 499315501, 1835933293, 6792310153, 24827506873, 90058277233, 328509505633, 1210097040769, 4473191880961, 16495696956961, 60721903812961
Offset: 0
-
Table[n!*Sum[1/(k!^2*(2*k)!*(n - 4*k)!), {k, 0, n/4}], {n, 0, 30}] (* Vaclav Kotesovec, Mar 20 2023 *)
-
a(n) = n!*sum(k=0, n\4, 1/(k!^2*(2*k)!*(n-4*k)!));
A361673
Constant term in the expansion of (1 + x*y + y*z + z*x + 1/(x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 61, 361, 1261, 3361, 7561, 34021, 235621, 1294921, 5482621, 19039021, 65345281, 286147681, 1511480881, 7688794681, 34337600281, 138221512741, 554603041441, 2454508134541, 11874549049441, 57412094595241, 261925516443361, 1134301869703861
Offset: 0
-
Table[n! * Sum[1/(k!^3 * (2*k)! * (n-5*k)!), {k,0,n/5}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
-
a(n) = n!*sum(k=0, n\5, 1/(k!^3*(2*k)!*(n-5*k)!));
A361705
Constant term in the expansion of (1 + w^4 + x^4 + y^4 + z^4 + 1/(w*x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1681, 15121, 75601, 277201, 831601, 2162161, 5045041, 10810801, 54054001, 592191601, 5035670641, 31553973361, 157346607601, 660308770801, 2420415874801, 7951853614321, 24853781309281, 91246800876001, 497098157556001, 3346262924004001
Offset: 0
-
Table[Sum[(4*k)!/k!^4 * Binomial[8*k,4*k] * Binomial[n,8*k], {k,0,n/8}], {n,0,30}] (* Vaclav Kotesovec, Mar 25 2023 *)
-
a(n) = sum(k=0, n\8, (4*k)!/k!^4*binomial(8*k, 4*k)*binomial(n, 8*k));
A361701
Constant term in the expansion of (1 + x^4 + y^4 + z^4 + 1/(x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 211, 1681, 7561, 25201, 69301, 166321, 360361, 990991, 5405401, 34834801, 187867681, 833709241, 3153281041, 10491944401, 31945216801, 97323704941, 345845431471, 1529597398561, 7451402805001, 35092646589001, 151591791651301
Offset: 0
-
Table[Sum[(3*k)!/k!^3 * Binomial[7*k,3*k] * Binomial[n,7*k], {k,0,n/7}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
-
a(n) = sum(k=0, n\7, (3*k)!/k!^3*binomial(7*k, 3*k)*binomial(n, 7*k));
Showing 1-4 of 4 results.
Comments