A361703
Constant term in the expansion of (1 + w + x + y + z + 1/(w*x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 121, 721, 2521, 6721, 15121, 143641, 1302841, 7579441, 32586841, 113753641, 509068561, 3599319361, 25076993761, 142188273361, 662296228561, 2933770097881, 15581813723281, 99333170493481, 623696622059281, 3466773281312881, 17406784944114721
Offset: 0
-
a(n) = sum(k=0, n\5, (4*k)!/k!^4*binomial(5*k, 4*k)*binomial(n, 5*k));
A361673
Constant term in the expansion of (1 + x*y + y*z + z*x + 1/(x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 61, 361, 1261, 3361, 7561, 34021, 235621, 1294921, 5482621, 19039021, 65345281, 286147681, 1511480881, 7688794681, 34337600281, 138221512741, 554603041441, 2454508134541, 11874549049441, 57412094595241, 261925516443361, 1134301869703861
Offset: 0
-
Table[n! * Sum[1/(k!^3 * (2*k)! * (n-5*k)!), {k,0,n/5}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
-
a(n) = n!*sum(k=0, n\5, 1/(k!^3*(2*k)!*(n-5*k)!));
A361704
Constant term in the expansion of (1 + w^2 + x^2 + y^2 + z^2 + 1/(w*x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 361, 2521, 10081, 30241, 75601, 166321, 1580041, 16833961, 114594481, 569368801, 2273150881, 7723366561, 30024671041, 193227592321, 1460787267601, 9492136169041, 50996729017081, 232560967743721, 973251617544361, 4464217099881001
Offset: 0
-
Table[Sum[(4*k)!/k!^4 * Binomial[6*k,4*k] * Binomial[n,6*k], {k,0,n/6}], {n,0,25}] (* Vaclav Kotesovec, Mar 25 2023 *)
-
a(n) = sum(k=0, n\6, (4*k)!/k!^4*binomial(6*k, 4*k)*binomial(n, 6*k));
A361705
Constant term in the expansion of (1 + w^4 + x^4 + y^4 + z^4 + 1/(w*x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1681, 15121, 75601, 277201, 831601, 2162161, 5045041, 10810801, 54054001, 592191601, 5035670641, 31553973361, 157346607601, 660308770801, 2420415874801, 7951853614321, 24853781309281, 91246800876001, 497098157556001, 3346262924004001
Offset: 0
-
Table[Sum[(4*k)!/k!^4 * Binomial[8*k,4*k] * Binomial[n,8*k], {k,0,n/8}], {n,0,30}] (* Vaclav Kotesovec, Mar 25 2023 *)
-
a(n) = sum(k=0, n\8, (4*k)!/k!^4*binomial(8*k, 4*k)*binomial(n, 8*k));
Showing 1-4 of 4 results.
Comments