cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A361637 Constant term in the expansion of (1 + x + y + z + 1/(x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 25, 121, 361, 841, 4201, 25705, 118441, 423721, 1628881, 8065201, 41225185, 184416961, 768211081, 3420474121, 16620237001, 79922011465, 364149052705, 1638806098945, 7655390077105, 36739991161105, 174363209490625, 811840219629121, 3790118889635521
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2023

Keywords

Comments

Diagonal of the rational function 1/(1 - (x^4 + y^4 + z^4 + w^4 + x*y*z*w)). - Seiichi Manyama, Jul 04 2025

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\4, 1/(k!^4*(n-4*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} 1/(k!^4 * (n-4*k)!).
G.f.: Sum_{k>=0} (4*k)!/k!^4 * x^(4*k)/(1-x)^(4*k+1).
From Vaclav Kotesovec, Mar 20 2023: (Start)
Recurrence: n^3*a(n) = (2*n - 1)*(2*n^2 - 2*n + 1)*a(n-1) - (n-1)*(6*n^2 - 12*n + 7)*a(n-2) + 2*(n-2)*(n-1)*(2*n - 3)*a(n-3) + 255*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 5^(n + 3/2) / (2^(5/2) * Pi^(3/2) * n^(3/2)). (End)

A361636 Diagonal of the rational function 1/(1 - v*w*x*y*z * (1 + 1/v + 1/w + 1/x + 1/y + 1/z)).

Original entry on oeis.org

1, 1, 1, 1, 121, 721, 2521, 6721, 128521, 1277641, 7539841, 32527441, 281835841, 3031468441, 23779315561, 139431015361, 962322302761, 9034098300361, 79726215362761, 569831799431881, 3952559737085401, 32660742079719601, 289694072383115401
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2023

Keywords

Comments

Diagonal of the rational function 1/(1 - (v^4 + w^4 + x^4 + y^4 + z^4 + v*w*x*y*z)). - Seiichi Manyama, Jul 04 2025

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n + k)!/(k!^5*(n - 4*k)!), {k, 0, n/4}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 19 2023 *)
  • PARI
    a(n) = sum(k=0, n\4, (n+k)!/(k!^5*(n-4*k)!));

Formula

a(n) = Sum_{k=0..floor(n/4)} (n+k)!/(k!^5 * (n-4*k)!).
G.f.: Sum_{k>=0} (5*k)!/k!^5 * x^(4*k)/(1-x)^(5*k+1).
Recurrence: n^4*(5*n - 19)*(5*n - 18)*(5*n - 17)*(5*n - 14)*(5*n - 13)*(5*n - 9)*a(n) = (5*n - 19)*(5*n - 18)*(5*n - 14)*(625*n^7 - 6125*n^6 + 23025*n^5 - 43195*n^4 + 45394*n^3 - 28716*n^2 + 10144*n - 1536)*a(n-1) - (5*n - 19)*(31250*n^9 - 568750*n^8 + 4441875*n^7 - 19516000*n^6 + 53172025*n^5 - 93366740*n^4 + 106140132*n^3 - 75781664*n^2 + 30987264*n - 5529600)*a(n-2) + (5*n - 4)*(31250*n^9 - 725000*n^8 + 7354375*n^7 - 42784750*n^6 + 157237100*n^5 - 378480620*n^4 + 596812963*n^3 - 594970390*n^2 + 340845072*n - 85743360)*a(n-3) + (5*n - 16)*(5*n - 9)*(5*n - 8)*(5*n - 4)*(78000*n^6 - 1450800*n^5 + 11179085*n^4 - 45672814*n^3 + 104341702*n^2 - 126378083*n + 63400710)*a(n-4) + (n-4)^4*(5*n - 14)*(5*n - 13)*(5*n - 12)*(5*n - 9)*(5*n - 8)*(5*n - 4)*a(n-5). - Vaclav Kotesovec, Mar 19 2023

A361704 Constant term in the expansion of (1 + w^2 + x^2 + y^2 + z^2 + 1/(w*x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 361, 2521, 10081, 30241, 75601, 166321, 1580041, 16833961, 114594481, 569368801, 2273150881, 7723366561, 30024671041, 193227592321, 1460787267601, 9492136169041, 50996729017081, 232560967743721, 973251617544361, 4464217099881001
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(4*k)!/k!^4 * Binomial[6*k,4*k] * Binomial[n,6*k], {k,0,n/6}], {n,0,25}] (* Vaclav Kotesovec, Mar 25 2023 *)
  • PARI
    a(n) = sum(k=0, n\6, (4*k)!/k!^4*binomial(6*k, 4*k)*binomial(n, 6*k));

Formula

a(n) = Sum_{k=0..floor(n/6)} (4*k)!/k!^4 * binomial(6*k,4*k) * binomial(n,6*k).
From Vaclav Kotesovec, Mar 25 2023: (Start)
Recurrence: (n-3)*n^4*a(n) = (6*n^5 - 30*n^4 + 50*n^3 - 45*n^2 + 21*n - 4)*a(n-1) - (n-1)*(15*n^4 - 90*n^3 + 195*n^2 - 195*n + 76)*a(n-2) + 5*(n-2)*(n-1)*(4*n^3 - 24*n^2 + 48*n - 33)*a(n-3) - 5*(n-3)*(n-2)*(n-1)*(3*n^2 - 15*n + 19)*a(n-4) + 6*(n-4)*(n-3)^2*(n-2)*(n-1)*a(n-5) + 11663*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6).
a(n) ~ sqrt(7 + 9/(4*2^(1/3)) + 433/(48*2^(2/3))) * (1 + 3*2^(2/3))^n / (Pi^2 * n^2). (End)

A361705 Constant term in the expansion of (1 + w^4 + x^4 + y^4 + z^4 + 1/(w*x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1681, 15121, 75601, 277201, 831601, 2162161, 5045041, 10810801, 54054001, 592191601, 5035670641, 31553973361, 157346607601, 660308770801, 2420415874801, 7951853614321, 24853781309281, 91246800876001, 497098157556001, 3346262924004001
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(4*k)!/k!^4 * Binomial[8*k,4*k] * Binomial[n,8*k], {k,0,n/8}], {n,0,30}] (* Vaclav Kotesovec, Mar 25 2023 *)
  • PARI
    a(n) = sum(k=0, n\8, (4*k)!/k!^4*binomial(8*k, 4*k)*binomial(n, 8*k));

Formula

a(n) = Sum_{k=0..floor(n/8)} (4*k)!/k!^4 * binomial(8*k,4*k) * binomial(n,8*k).
a(n) ~ 5^(n+2) / (2^(5/2) * Pi^2 * n^2). - Vaclav Kotesovec, Mar 25 2023

A385606 Diagonal of the rational function 1/(1 - (v^3 + w^3 + x^3 + y^3 + z^3 + v*w*x*y*z)).

Original entry on oeis.org

1, 1, 1, 121, 721, 2521, 120121, 1262521, 7514641, 200655841, 2804296441, 23211542641, 443673670441, 7070369866561, 73192033638361, 1173608444069881, 19482750854113681, 235115468646608881, 3483568444035458401, 57574418930692099801, 769737183831483390601, 11118980118960559362001
Offset: 0

Views

Author

Seiichi Manyama, Jul 04 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, (n+2*k)!/(k!^5*(n-3*k)!));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n+2*k)!/(k!^5 * (n-3*k)!).

A385607 Diagonal of the rational function 1/(1 - (v^2 + w^2 + x^2 + y^2 + z^2 + v*w*x*y*z)).

Original entry on oeis.org

1, 1, 121, 721, 115921, 1254121, 175667521, 2723150641, 328524651841, 6553910658241, 694593264839761, 16751100559753561, 1592929589394223081, 44555491032952142881, 3872288533662063462481, 121957120480085202781681, 9836937778718128127534881, 341177468192261294809070401
Offset: 0

Views

Author

Seiichi Manyama, Jul 04 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (n+3*k)!/(k!^5*(n-2*k)!));

Formula

a(n) = Sum_{k=0..floor(n/2)} (n+3*k)!/(k!^5 * (n-2*k)!).
Showing 1-6 of 6 results.