A361703
Constant term in the expansion of (1 + w + x + y + z + 1/(w*x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 121, 721, 2521, 6721, 15121, 143641, 1302841, 7579441, 32586841, 113753641, 509068561, 3599319361, 25076993761, 142188273361, 662296228561, 2933770097881, 15581813723281, 99333170493481, 623696622059281, 3466773281312881, 17406784944114721
Offset: 0
-
a(n) = sum(k=0, n\5, (4*k)!/k!^4*binomial(5*k, 4*k)*binomial(n, 5*k));
A274783
Diagonal of the rational function 1/(1 - (w*x*y*z + w*x*y + w*x*z + w*y*z + x*y*z)).
Original entry on oeis.org
1, 1, 1, 25, 121, 361, 3361, 24361, 116425, 790441, 6060121, 36888721, 238815721, 1760983225, 11968188961, 79763351305, 570661612585, 4040282139625, 27901708614985, 198090585115105, 1420583920034161, 10056659775872161, 71730482491962361, 517012699162717825, 3713833648541268121
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- S. Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
-
with(combinat):
seq(add((n+k)!/(k!^4*(n-3*k)!), k = 0..floor(n/3)), n = 0..20); # Peter Bala, Jan 27 2018
-
my(x='x, y='y, z='z, w='w);
R = 1/(1-(w*x*y*z+w*x*y+w*x*z+w*y*z+x*y*z));
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(20, R, [x,y,z,w])
A361657
Constant term in the expansion of (1 + x^2 + y^2 + 1/(x*y))^n.
Original entry on oeis.org
1, 1, 1, 1, 13, 61, 181, 421, 1261, 5293, 21421, 73261, 232321, 789361, 2954953, 11127481, 39961741, 139908301, 499315501, 1835933293, 6792310153, 24827506873, 90058277233, 328509505633, 1210097040769, 4473191880961, 16495696956961, 60721903812961
Offset: 0
-
Table[n!*Sum[1/(k!^2*(2*k)!*(n - 4*k)!), {k, 0, n/4}], {n, 0, 30}] (* Vaclav Kotesovec, Mar 20 2023 *)
-
a(n) = n!*sum(k=0, n\4, 1/(k!^2*(2*k)!*(n-4*k)!));
A361658
Constant term in the expansion of (1 + x^3 + y^3 + z^3 + 1/(x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 121, 841, 3361, 10081, 25201, 55441, 194041, 1287001, 7927921, 38438401, 152312161, 516079201, 1627691521, 5745472321, 25999820401, 133086258481, 651284938921, 2860955078521, 11312609403481, 42039298455001, 158864460354601, 658342633033801
Offset: 0
-
Table[n!*Sum[1/(k!^3 * (3*k)! * (n-6*k)!), {k, 0, n/6}], {n, 0, 30}] (* Vaclav Kotesovec, Mar 20 2023 *)
-
a(n) = n!*sum(k=0, n\6, 1/(k!^3*(3*k)!*(n-6*k)!));
A274785
Diagonal of the rational function 1/(1-(w*x*y*z + w*x*z + w*y + x*y + z)).
Original entry on oeis.org
1, 1, 25, 121, 2881, 23521, 484681, 5223625, 97949041, 1243490161, 22061635465, 309799010665, 5331441539425, 79799232449665, 1352284119871465, 21095036702450281, 355125946871044561, 5694209222592780625, 95705961654403180201, 1563714140278617173641, 26311422169994777663761
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..801
- A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- S. Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
-
seq(add(binomial(n+2*k, 2*k)*binomial(n, 2*k)*binomial(2*k, k)^2, k = 0..floor(n/2)), n = 0..20); # Peter Bala, Jan 27 2018
-
Table[Sum[Binomial[n + 2*k, 2*k]*Binomial[n, 2*k]*Binomial[2*k, k]^2, {k, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 17 2023 *)
-
my(x='x, y='y, z='z, w='w);
R = 1/(1-(w*x*y*z+w*x*z+w*y+x*y+z));
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(12, R, [x,y,z,w])
-
a(n) = sum(k=0, n\2, binomial(n + 2*k,2*k) * binomial(n,2*k) * binomial(2*k,k)^2) \\ Andrew Howroyd, Mar 18 2023
A361673
Constant term in the expansion of (1 + x*y + y*z + z*x + 1/(x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 61, 361, 1261, 3361, 7561, 34021, 235621, 1294921, 5482621, 19039021, 65345281, 286147681, 1511480881, 7688794681, 34337600281, 138221512741, 554603041441, 2454508134541, 11874549049441, 57412094595241, 261925516443361, 1134301869703861
Offset: 0
-
Table[n! * Sum[1/(k!^3 * (2*k)! * (n-5*k)!), {k,0,n/5}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
-
a(n) = n!*sum(k=0, n\5, 1/(k!^3*(2*k)!*(n-5*k)!));
A361678
Constant term in the expansion of (1 + w + x + y + z + 1/(x*y*z) + 1/(w*y*z) + 1/(w*x*z) + 1/(w*x*y))^n.
Original entry on oeis.org
1, 1, 1, 1, 97, 481, 1441, 3361, 77281, 647137, 3195361, 11674081, 116286721, 1147935361, 7611379777, 37451144641, 263670781921, 2456043418081, 19073086806241, 115319128034017, 748239468100417, 6179458007222977, 50636218964639617, 350400618132423937
Offset: 0
-
Table[Sum[(4*k)!/k!^4 * Binomial[4*k,k] * Binomial[n,4*k], {k,0,n/4}], {n,0,25}] (* Vaclav Kotesovec, Mar 22 2023 *)
-
a(n) = sum(k=0, n\4, (4*k)!/k!^4*binomial(4*k, k)*binomial(n, 4*k));
A361701
Constant term in the expansion of (1 + x^4 + y^4 + z^4 + 1/(x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 211, 1681, 7561, 25201, 69301, 166321, 360361, 990991, 5405401, 34834801, 187867681, 833709241, 3153281041, 10491944401, 31945216801, 97323704941, 345845431471, 1529597398561, 7451402805001, 35092646589001, 151591791651301
Offset: 0
-
Table[Sum[(3*k)!/k!^3 * Binomial[7*k,3*k] * Binomial[n,7*k], {k,0,n/7}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
-
a(n) = sum(k=0, n\7, (3*k)!/k!^3*binomial(7*k, 3*k)*binomial(n, 7*k));
Showing 1-8 of 8 results.
Comments