cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A361703 Constant term in the expansion of (1 + w + x + y + z + 1/(w*x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 121, 721, 2521, 6721, 15121, 143641, 1302841, 7579441, 32586841, 113753641, 509068561, 3599319361, 25076993761, 142188273361, 662296228561, 2933770097881, 15581813723281, 99333170493481, 623696622059281, 3466773281312881, 17406784944114721
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2023

Keywords

Comments

Diagonal of the rational function 1/(1 - (v^5 + w^5 + x^5 + y^5 + z^5 + v*w*x*y*z)). - Seiichi Manyama, Jul 04 2025

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\5, (4*k)!/k!^4*binomial(5*k, 4*k)*binomial(n, 5*k));

Formula

a(n) = Sum_{k=0..floor(n/5)} (4*k)!/k!^4 * binomial(5*k,4*k) * binomial(n,5*k) = Sum_{k=0..floor(n/5)} (5*k)!/k!^5 * binomial(n,5*k).
a(n) ~ 9 * 6^n / (sqrt(5) * Pi^2 * n^2). - Vaclav Kotesovec, Mar 25 2023

A274783 Diagonal of the rational function 1/(1 - (w*x*y*z + w*x*y + w*x*z + w*y*z + x*y*z)).

Original entry on oeis.org

1, 1, 1, 25, 121, 361, 3361, 24361, 116425, 790441, 6060121, 36888721, 238815721, 1760983225, 11968188961, 79763351305, 570661612585, 4040282139625, 27901708614985, 198090585115105, 1420583920034161, 10056659775872161, 71730482491962361, 517012699162717825, 3713833648541268121
Offset: 0

Views

Author

Gheorghe Coserea, Jul 13 2016

Keywords

Comments

Diagonal of the rational function 1/(1 - (x^3 + y^3 + z^3 + w^3 + x*y*z*w)). - Seiichi Manyama, Jul 04 2025

Crossrefs

Programs

  • Maple
    with(combinat):
    seq(add((n+k)!/(k!^4*(n-3*k)!), k = 0..floor(n/3)), n = 0..20); # Peter Bala, Jan 27 2018
  • PARI
    my(x='x, y='y, z='z, w='w);
    R = 1/(1-(w*x*y*z+w*x*y+w*x*z+w*y*z+x*y*z));
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(20, R, [x,y,z,w])

Formula

0 = x^2*(x+3)^2*(x^4 - 260*x^3 + 6*x^2 - 4*x + 1)*y''' + 3*x*(x+3)*(2*x^5 - 381*x^4 - 1944*x^3 + 34*x^2 - 18*x + 3)*y'' + (7*x^6 - 764*x^5 - 9101*x^4 - 27264*x^3 + 381*x^2 - 132*x + 9)*y' + (x^5 - 13*x^4 - 246*x^3 - 5946*x^2 + 69*x - 9)*y, where y is the g.f.
a(n) = Sum_{k = 0..floor(n/3)} (n+k)!/(k!^4*(n-3*k)!) = Sum_{k = 0..floor(n/3)} binomial(n,3*k)*binomial(n+k,k)*(3*k)!/k!^3 (apply Eger, Theorem 3 to the set of column vectors S = {[1,1,1,1], [1,1,0,1], [1,0,1,1], [0,1,1,1], [1,1,1,0]}). - Peter Bala, Jan 27 2018
G.f.: Sum_{k>=0} (4*k)!/k!^4 * x^(3*k)/(1-x)^(4*k+1). - Seiichi Manyama, Mar 19 2023
From Vaclav Kotesovec, Mar 19 2023: (Start)
Recurrence: n^3*(2*n - 5)*(4*n - 11)*(4*n - 7)*a(n) = (4*n - 11)*(32*n^5 - 184*n^4 + 368*n^3 - 327*n^2 + 147*n - 27)*a(n-1) - (192*n^6 - 1920*n^5 + 7628*n^4 - 15366*n^3 + 16567*n^2 - 9117*n + 2025)*a(n-2) + (4*n - 9)*(4*n - 3)*(520*n^4 - 4420*n^3 + 13809*n^2 - 18769*n + 9367)*a(n-3) - (n-3)^3*(2*n - 3)*(4*n - 7)*(4*n - 3)*a(n-4).
a(n) ~ sqrt(9/8 + 3/(32*sqrt(2)) + sqrt(1085/32 + 161/(2*sqrt(2)))/8) * (1 + 2*sqrt(2) + 2*sqrt(2*(2*sqrt(2) - 1)))^n / (Pi^(3/2) * n^(3/2)). (End)

A361657 Constant term in the expansion of (1 + x^2 + y^2 + 1/(x*y))^n.

Original entry on oeis.org

1, 1, 1, 1, 13, 61, 181, 421, 1261, 5293, 21421, 73261, 232321, 789361, 2954953, 11127481, 39961741, 139908301, 499315501, 1835933293, 6792310153, 24827506873, 90058277233, 328509505633, 1210097040769, 4473191880961, 16495696956961, 60721903812961
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*Sum[1/(k!^2*(2*k)!*(n - 4*k)!), {k, 0, n/4}], {n, 0, 30}] (* Vaclav Kotesovec, Mar 20 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n\4, 1/(k!^2*(2*k)!*(n-4*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} 1/(k!^2 * (2*k)! * (n-4*k)!) = Sum_{k=0..floor(n/4)} binomial(n,4*k) * A000897(k).
From Vaclav Kotesovec, Mar 20 2023: (Start)
Recurrence: (n-2)*n^2*a(n) = (4*n^3 - 12*n^2 + 10*n - 3)*a(n-1) - (n-1)*(6*n^2 - 18*n + 13)*a(n-2) + 4*(n-2)^2*(n-1)*a(n-3) + 63*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ (1 + 2*sqrt(2))^(n+1) / (4*Pi*n). (End)

A361658 Constant term in the expansion of (1 + x^3 + y^3 + z^3 + 1/(x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 121, 841, 3361, 10081, 25201, 55441, 194041, 1287001, 7927921, 38438401, 152312161, 516079201, 1627691521, 5745472321, 25999820401, 133086258481, 651284938921, 2860955078521, 11312609403481, 42039298455001, 158864460354601, 658342633033801
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*Sum[1/(k!^3 * (3*k)! * (n-6*k)!), {k, 0, n/6}], {n, 0, 30}] (* Vaclav Kotesovec, Mar 20 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n\6, 1/(k!^3*(3*k)!*(n-6*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/6)} 1/(k!^3 * (3*k)! * (n-6*k)!) = Sum_{k=0..floor(n/6)} binomial(n,6*k) * A001421(k).
From Vaclav Kotesovec, Mar 20 2023: (Start)
Recurrence: (n-4)*(n-2)*n^3*a(n) = (6*n^5 - 45*n^4 + 112*n^3 - 123*n^2 + 68*n - 15)*a(n-1) - 3*(n-1)*(5*n^4 - 40*n^3 + 111*n^2 - 132*n + 59)*a(n-2) + 2*(n-2)*(n-1)*(10*n^3 - 75*n^2 + 181*n - 144)*a(n-3) - (n-3)*(n-2)*(n-1)*(15*n^2 - 90*n + 133)*a(n-4) + 3*(n-4)*(n-3)*(n-2)*(n-1)*(2*n - 7)*a(n-5) + 1727*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6).
a(n) ~ (1 + 2*sqrt(3))^(n + 3/2) / (4 * 3^(1/4) * Pi^(3/2) * n^(3/2)). (End)

A274785 Diagonal of the rational function 1/(1-(w*x*y*z + w*x*z + w*y + x*y + z)).

Original entry on oeis.org

1, 1, 25, 121, 2881, 23521, 484681, 5223625, 97949041, 1243490161, 22061635465, 309799010665, 5331441539425, 79799232449665, 1352284119871465, 21095036702450281, 355125946871044561, 5694209222592780625, 95705961654403180201, 1563714140278617173641, 26311422169994777663761
Offset: 0

Views

Author

Gheorghe Coserea, Jul 13 2016

Keywords

Comments

Diagonal of the rational function 1/(1 - (x^2 + y^2 + z^2 + w^2 + x*y*z*w)). - Seiichi Manyama, Jul 04 2025

Crossrefs

Programs

  • Maple
    seq(add(binomial(n+2*k, 2*k)*binomial(n, 2*k)*binomial(2*k, k)^2, k = 0..floor(n/2)), n = 0..20); # Peter Bala, Jan 27 2018
  • Mathematica
    Table[Sum[Binomial[n + 2*k, 2*k]*Binomial[n, 2*k]*Binomial[2*k, k]^2, {k, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 17 2023 *)
  • PARI
    my(x='x, y='y, z='z, w='w);
    R = 1/(1-(w*x*y*z+w*x*z+w*y+x*y+z));
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(12, R, [x,y,z,w])
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(n + 2*k,2*k) * binomial(n,2*k) * binomial(2*k,k)^2) \\ Andrew Howroyd, Mar 18 2023

Formula

0 = (-x^2+2*x^3+257*x^4+508*x^5+257*x^6+2*x^7-x^8)*y''' + (-3*x+15*x^2+1524*x^3+2286*x^4+789*x^5+3*x^6-6*x^7)*y'' + (-1+16*x+1687*x^2+1168*x^3+217*x^4-8*x^5-7*x^6)*y' + (1+183*x-178*x^2-2*x^3-3*x^4-x^5)*y, where y is the g.f.
a(n) = Sum_{k = 0..floor(n/2)} C(n + 2*k,2*k)*C(n,2*k)*C(2*k,k)^2 (apply Eger, Theorem 3 to the set of column vectors S = {[0,0,1,0], [1,1,0,0], [0,1,0,1], [1,0,1,1],[1,1,1,1]}). - Peter Bala, Jan 27 2018
n^3*(n - 2)*(2*n - 5)*a(n) = (2*n - 5)*(2*n - 1)*(2*n^3 - 6*n^2 + 4*n - 1)*a(n-1) + (2*n - 3)*(250*n^4 - 1500*n^3 + 3066*n^2 - 2448*n + 629)*a(n-2) + (2*n - 5)*(2*n - 1)*(2*n^3 - 12*n^2 + 22*n - 11)*a(n-3) - (2*n - 1)*(n - 1)*(n - 3)^3*a(n-4). - Peter Bala, Mar 17 2023
a(n) ~ 5^(1/4) * phi^(6*n + 3) / (2^(5/2) * Pi^(3/2) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Mar 17 2023

A361673 Constant term in the expansion of (1 + x*y + y*z + z*x + 1/(x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 61, 361, 1261, 3361, 7561, 34021, 235621, 1294921, 5482621, 19039021, 65345281, 286147681, 1511480881, 7688794681, 34337600281, 138221512741, 554603041441, 2454508134541, 11874549049441, 57412094595241, 261925516443361, 1134301869703861
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2023

Keywords

Comments

Also constant term in the expansion of (1 + x^2 + y^2 + z^2 + 1/(x*y*z))^n.

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[1/(k!^3 * (2*k)! * (n-5*k)!), {k,0,n/5}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n\5, 1/(k!^3*(2*k)!*(n-5*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/5)} 1/(k!^3 * (2*k)! * (n-5*k)!) = Sum_{k=0..floor(n/5)} binomial(n,5*k) * A001460(k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: 2*n^3*(2*n - 5)*a(n) = 2*(10*n^4 - 40*n^3 + 50*n^2 - 30*n + 7)*a(n-1) - 10*(n-1)*(4*n^3 - 18*n^2 + 26*n - 13)*a(n-2) + 40*(n-2)^3*(n-1)*a(n-3) - 10*(n-3)*(n-2)*(n-1)*(2*n - 5)*a(n-4) + 3129*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
a(n) ~ sqrt(c) * (1 + 5/2^(2/5))^n / (Pi^(3/2) * n^(3/2)), where c = 3.154712586460560795509193778252140601572145506226776094640234924884123818... is the real root of the equation -30634915689 + 95407210000*c - 127160000000*c^2 + 79846400000*c^3 - 25600000000*c^4 + 3276800000*c^5 = 0. (End)

A361678 Constant term in the expansion of (1 + w + x + y + z + 1/(x*y*z) + 1/(w*y*z) + 1/(w*x*z) + 1/(w*x*y))^n.

Original entry on oeis.org

1, 1, 1, 1, 97, 481, 1441, 3361, 77281, 647137, 3195361, 11674081, 116286721, 1147935361, 7611379777, 37451144641, 263670781921, 2456043418081, 19073086806241, 115319128034017, 748239468100417, 6179458007222977, 50636218964639617, 350400618132423937
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(4*k)!/k!^4 * Binomial[4*k,k] * Binomial[n,4*k], {k,0,n/4}], {n,0,25}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = sum(k=0, n\4, (4*k)!/k!^4*binomial(4*k, k)*binomial(n, 4*k));

Formula

a(n) = Sum_{k=0..floor(n/4)} (4*k)!/k!^4 * binomial(4*k,k) * binomial(n,4*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: 3*n^4*(3*n - 8)*(3*n - 4)*a(n) = 3*(63*n^6 - 405*n^5 + 1015*n^4 - 1355*n^3 + 1049*n^2 - 439*n + 77)*a(n-1) - 3*(n-1)*(189*n^5 - 1485*n^4 + 4685*n^3 - 7575*n^2 + 6313*n - 2163)*a(n-2) + 3*(n-2)*(n-1)*(315*n^4 - 2610*n^3 + 8285*n^2 - 12030*n + 6749)*a(n-3) + (n-3)*(n-2)*(n-1)*(64591*n^3 - 385926*n^2 + 701651*n - 375786)*a(n-4) - 3*(n-4)*(n-3)*(n-2)*(n-1)*(65347*n^2 - 326519*n + 391384)*a(n-5) + 3*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(65473*n - 196383)*a(n-6) - 65509*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-7).
a(n) ~ sqrt(65563/12288 + 3*sqrt(3)/8 + sqrt(3/8 + 65563/(4096*sqrt(3)))) * (1 + 16/3^(3/4))^n / (Pi^2 * n^2). (End)

A361701 Constant term in the expansion of (1 + x^4 + y^4 + z^4 + 1/(x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 211, 1681, 7561, 25201, 69301, 166321, 360361, 990991, 5405401, 34834801, 187867681, 833709241, 3153281041, 10491944401, 31945216801, 97323704941, 345845431471, 1529597398561, 7451402805001, 35092646589001, 151591791651301
Offset: 0

Views

Author

Seiichi Manyama, Mar 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(3*k)!/k!^3 * Binomial[7*k,3*k] * Binomial[n,7*k], {k,0,n/7}], {n,0,20}] (* Vaclav Kotesovec, Mar 22 2023 *)
  • PARI
    a(n) = sum(k=0, n\7, (3*k)!/k!^3*binomial(7*k, 3*k)*binomial(n, 7*k));

Formula

a(n) = Sum_{k=0..floor(n/7)} (3*k)!/k!^3 * binomial(7*k,3*k) * binomial(n,7*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: 8*n^3*(2*n - 7)*(4*n - 21)*(4*n - 7)*a(n) = 8*(224*n^6 - 2688*n^5 + 11550*n^4 - 22736*n^3 + 22666*n^2 - 11746*n + 2475)*a(n-1) - 56*(n-1)*(96*n^5 - 1200*n^4 + 5540*n^3 - 11982*n^2 + 12466*n - 5115)*a(n-2) + 224*(n-2)*(n-1)*(40*n^4 - 480*n^3 + 2065*n^2 - 3822*n + 2607)*a(n-3) - 56*(n-3)*(n-2)*(n-1)*(160*n^3 - 1680*n^2 + 5730*n - 6407)*a(n-4) + 112*(n-4)*(n-3)*(n-2)*(n-1)*(48*n^2 - 384*n + 757)*a(n-5) - 896*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(2*n - 9)*a(n-6) + 823799*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-7).
a(n) ~ sqrt(c) * (1 + 7/2^(8/7))^n / (Pi^(3/2) * n^(3/2)), where c = 3.4855654710461411310762468259332410505173151761420224383969482891017005063... is the real root of the equation -559066901335151399 + 2527163634923732000*c - 5081793740448746496*c^2 + 5406293137205395456*c^3 - 3558495001867452416*c^4 + 1393309590535274496*c^5 - 303305489096114176*c^6 + 28296722014797824*c^7 = 0. (End)
Showing 1-8 of 8 results.