cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A361637 Constant term in the expansion of (1 + x + y + z + 1/(x*y*z))^n.

Original entry on oeis.org

1, 1, 1, 1, 25, 121, 361, 841, 4201, 25705, 118441, 423721, 1628881, 8065201, 41225185, 184416961, 768211081, 3420474121, 16620237001, 79922011465, 364149052705, 1638806098945, 7655390077105, 36739991161105, 174363209490625, 811840219629121, 3790118889635521
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2023

Keywords

Comments

Diagonal of the rational function 1/(1 - (x^4 + y^4 + z^4 + w^4 + x*y*z*w)). - Seiichi Manyama, Jul 04 2025

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\4, 1/(k!^4*(n-4*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/4)} 1/(k!^4 * (n-4*k)!).
G.f.: Sum_{k>=0} (4*k)!/k!^4 * x^(4*k)/(1-x)^(4*k+1).
From Vaclav Kotesovec, Mar 20 2023: (Start)
Recurrence: n^3*a(n) = (2*n - 1)*(2*n^2 - 2*n + 1)*a(n-1) - (n-1)*(6*n^2 - 12*n + 7)*a(n-2) + 2*(n-2)*(n-1)*(2*n - 3)*a(n-3) + 255*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 5^(n + 3/2) / (2^(5/2) * Pi^(3/2) * n^(3/2)). (End)

A208425 Expansion of Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-x)^(3*n+1).

Original entry on oeis.org

1, 1, 7, 25, 151, 751, 4411, 24697, 146455, 862351, 5195257, 31392967, 191815339, 1177508515, 7276161907, 45154764025, 281492498455, 1761076827895, 11055132835705, 69600761349175, 439370198255401, 2780265190892641, 17631718101804517, 112038660509078695
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2012

Keywords

Comments

Compare g.f. to: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-2*x)^(3*n+1), which is a g.f. of the Franel numbers (A000172).
From Zhi-Wei Sun, Nov 12 2016: (Start)
Conjecture: (i) For any prime p > 3 and positive integer n, the number (a(p*n)-a(n))/(p*n)^3 is always a p-adic integer.
(ii) For any prime p == 1 (mod 3), we have Sum_{k=0..p-1}a(k) == C(2(p-1)/3,(p-1)/3) (mod p^2). For any prime p == 2 (mod 3), we have Sum_{k=0..p-1}a(k) == 2p/C(2(p+1)/3,(p+1)/3) (mod p^2).
We have proved part (i) of this conjecture for n = 1. (End)
Diagonal of rational functions 1/(1 - x*y - y*z - x*z - x*y*z), 1/(1 - x*y + y*z + x*z - x*y*z). - Gheorghe Coserea, Jul 03 2018
Number of paths from (0,0,0) to (n,n,n) using steps (1,1,0), (1,0,1), (0,1,1), and (1,1,1). - William J. Wang, Dec 07 2020
Diagonal of the rational function 1/(1 - (x^2 + y^2 + z^2 + x*y*z)). - Seiichi Manyama, Jul 04 2025

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 25*x^3 + 151*x^4 + 751*x^5 + 4411*x^6 +...
where
A(x) = 1/(1-x) + 6*x^2/(1-x)^4 + 90*x^4/(1-x)^7 + 1680*x^6/(1-x)^10 + 34650*x^8/(1-x)^13 + 756756*x^10/(1-x)^16 +...
		

Crossrefs

Programs

  • Maple
    series(hypergeom([1/3, 2/3], [1], 27*x^2/(1 - x)^3)/(1 - x), x=0, 25): seq(coeff(%, x, n), n=0..23);  # Mark van Hoeij, May 20 2013
    a := n -> hypergeom([1/2 - n/2, -n/2, n + 1], [1, 1], 4); seq(simplify(a(n)), n=0..23);  # Peter Luschny, Jan 11 2025
  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[(3*n)!/n!^3 * x^(2*n)/(1-x)^(3*n+1), {n, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)/(1-x+x*O(x^n))^(3*m+1)),n)}
    for(n=0,25,print1(a(n),", "))

Formula

Conjecture: n^2*(3*n-5)*a(n) +(-9*n^3+24*n^2-17*n+4) *a(n-1) -(3*n-4) *(24*n^2-56*n+27)*a(n-2) -(3*n-2)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Mar 10 2016
a(n) ~ sqrt(1/2 + sqrt(13)*cos(arctan(53*sqrt(3)/19)/3)/6) * (1 + 6*cos(Pi/9))^n / (Pi*n). - Vaclav Kotesovec, Jul 05 2016
It is easy to show that a(n) = Sum_{k=0..n}C(n,k)*C(n-k,k)*C(n+k,k) = Sum_{k=0..n}C(n+k,k)*C(n,2k)*C(2k,k). By this formula and the Zeilberger algorithm, we confirm the recurrence conjectured by R. J. Mathar. - Zhi-Wei Sun, Nov 12 2016
G.f. y=A(x) satisfies: 0 = x*(x + 2)*(x^3 + 24*x^2 + 3*x - 1)*y'' + (3*x^4 + 56*x^3 + 147*x^2 + 12*x - 2)*y' + (x^3 + 9*x^2 + 42*x + 2)*y. - Gheorghe Coserea, Jul 03 2018
a(n) = hypergeom([1/2 - n/2, -n/2, n + 1], [1, 1], 4). - Peter Luschny, Jan 11 2025

A361636 Diagonal of the rational function 1/(1 - v*w*x*y*z * (1 + 1/v + 1/w + 1/x + 1/y + 1/z)).

Original entry on oeis.org

1, 1, 1, 1, 121, 721, 2521, 6721, 128521, 1277641, 7539841, 32527441, 281835841, 3031468441, 23779315561, 139431015361, 962322302761, 9034098300361, 79726215362761, 569831799431881, 3952559737085401, 32660742079719601, 289694072383115401
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2023

Keywords

Comments

Diagonal of the rational function 1/(1 - (v^4 + w^4 + x^4 + y^4 + z^4 + v*w*x*y*z)). - Seiichi Manyama, Jul 04 2025

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n + k)!/(k!^5*(n - 4*k)!), {k, 0, n/4}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 19 2023 *)
  • PARI
    a(n) = sum(k=0, n\4, (n+k)!/(k!^5*(n-4*k)!));

Formula

a(n) = Sum_{k=0..floor(n/4)} (n+k)!/(k!^5 * (n-4*k)!).
G.f.: Sum_{k>=0} (5*k)!/k!^5 * x^(4*k)/(1-x)^(5*k+1).
Recurrence: n^4*(5*n - 19)*(5*n - 18)*(5*n - 17)*(5*n - 14)*(5*n - 13)*(5*n - 9)*a(n) = (5*n - 19)*(5*n - 18)*(5*n - 14)*(625*n^7 - 6125*n^6 + 23025*n^5 - 43195*n^4 + 45394*n^3 - 28716*n^2 + 10144*n - 1536)*a(n-1) - (5*n - 19)*(31250*n^9 - 568750*n^8 + 4441875*n^7 - 19516000*n^6 + 53172025*n^5 - 93366740*n^4 + 106140132*n^3 - 75781664*n^2 + 30987264*n - 5529600)*a(n-2) + (5*n - 4)*(31250*n^9 - 725000*n^8 + 7354375*n^7 - 42784750*n^6 + 157237100*n^5 - 378480620*n^4 + 596812963*n^3 - 594970390*n^2 + 340845072*n - 85743360)*a(n-3) + (5*n - 16)*(5*n - 9)*(5*n - 8)*(5*n - 4)*(78000*n^6 - 1450800*n^5 + 11179085*n^4 - 45672814*n^3 + 104341702*n^2 - 126378083*n + 63400710)*a(n-4) + (n-4)^4*(5*n - 14)*(5*n - 13)*(5*n - 12)*(5*n - 9)*(5*n - 8)*(5*n - 4)*a(n-5). - Vaclav Kotesovec, Mar 19 2023

A274785 Diagonal of the rational function 1/(1-(w*x*y*z + w*x*z + w*y + x*y + z)).

Original entry on oeis.org

1, 1, 25, 121, 2881, 23521, 484681, 5223625, 97949041, 1243490161, 22061635465, 309799010665, 5331441539425, 79799232449665, 1352284119871465, 21095036702450281, 355125946871044561, 5694209222592780625, 95705961654403180201, 1563714140278617173641, 26311422169994777663761
Offset: 0

Views

Author

Gheorghe Coserea, Jul 13 2016

Keywords

Comments

Diagonal of the rational function 1/(1 - (x^2 + y^2 + z^2 + w^2 + x*y*z*w)). - Seiichi Manyama, Jul 04 2025

Crossrefs

Programs

  • Maple
    seq(add(binomial(n+2*k, 2*k)*binomial(n, 2*k)*binomial(2*k, k)^2, k = 0..floor(n/2)), n = 0..20); # Peter Bala, Jan 27 2018
  • Mathematica
    Table[Sum[Binomial[n + 2*k, 2*k]*Binomial[n, 2*k]*Binomial[2*k, k]^2, {k, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 17 2023 *)
  • PARI
    my(x='x, y='y, z='z, w='w);
    R = 1/(1-(w*x*y*z+w*x*z+w*y+x*y+z));
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(12, R, [x,y,z,w])
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(n + 2*k,2*k) * binomial(n,2*k) * binomial(2*k,k)^2) \\ Andrew Howroyd, Mar 18 2023

Formula

0 = (-x^2+2*x^3+257*x^4+508*x^5+257*x^6+2*x^7-x^8)*y''' + (-3*x+15*x^2+1524*x^3+2286*x^4+789*x^5+3*x^6-6*x^7)*y'' + (-1+16*x+1687*x^2+1168*x^3+217*x^4-8*x^5-7*x^6)*y' + (1+183*x-178*x^2-2*x^3-3*x^4-x^5)*y, where y is the g.f.
a(n) = Sum_{k = 0..floor(n/2)} C(n + 2*k,2*k)*C(n,2*k)*C(2*k,k)^2 (apply Eger, Theorem 3 to the set of column vectors S = {[0,0,1,0], [1,1,0,0], [0,1,0,1], [1,0,1,1],[1,1,1,1]}). - Peter Bala, Jan 27 2018
n^3*(n - 2)*(2*n - 5)*a(n) = (2*n - 5)*(2*n - 1)*(2*n^3 - 6*n^2 + 4*n - 1)*a(n-1) + (2*n - 3)*(250*n^4 - 1500*n^3 + 3066*n^2 - 2448*n + 629)*a(n-2) + (2*n - 5)*(2*n - 1)*(2*n^3 - 12*n^2 + 22*n - 11)*a(n-3) - (2*n - 1)*(n - 1)*(n - 3)^3*a(n-4). - Peter Bala, Mar 17 2023
a(n) ~ 5^(1/4) * phi^(6*n + 3) / (2^(5/2) * Pi^(3/2) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Mar 17 2023
Showing 1-4 of 4 results.