A361637
Constant term in the expansion of (1 + x + y + z + 1/(x*y*z))^n.
Original entry on oeis.org
1, 1, 1, 1, 25, 121, 361, 841, 4201, 25705, 118441, 423721, 1628881, 8065201, 41225185, 184416961, 768211081, 3420474121, 16620237001, 79922011465, 364149052705, 1638806098945, 7655390077105, 36739991161105, 174363209490625, 811840219629121, 3790118889635521
Offset: 0
A208425
Expansion of Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-x)^(3*n+1).
Original entry on oeis.org
1, 1, 7, 25, 151, 751, 4411, 24697, 146455, 862351, 5195257, 31392967, 191815339, 1177508515, 7276161907, 45154764025, 281492498455, 1761076827895, 11055132835705, 69600761349175, 439370198255401, 2780265190892641, 17631718101804517, 112038660509078695
Offset: 0
G.f.: A(x) = 1 + x + 7*x^2 + 25*x^3 + 151*x^4 + 751*x^5 + 4411*x^6 +...
where
A(x) = 1/(1-x) + 6*x^2/(1-x)^4 + 90*x^4/(1-x)^7 + 1680*x^6/(1-x)^10 + 34650*x^8/(1-x)^13 + 756756*x^10/(1-x)^16 +...
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- A. Bostan, S. Boukraa, J.-M. Maillard and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- Hao Pan and Zhi-Wei Sun, Supercongruences for central trinomial coefficients, arXiv:2012.05121 [math.NT], 2020.
- Zhi-Wei Sun, Supercongruences involving Lucas sequences, arXiv:1610.03384 [math.NT], 2016.
-
series(hypergeom([1/3, 2/3], [1], 27*x^2/(1 - x)^3)/(1 - x), x=0, 25): seq(coeff(%, x, n), n=0..23); # Mark van Hoeij, May 20 2013
a := n -> hypergeom([1/2 - n/2, -n/2, n + 1], [1, 1], 4); seq(simplify(a(n)), n=0..23); # Peter Luschny, Jan 11 2025
-
nmax = 20; CoefficientList[Series[Sum[(3*n)!/n!^3 * x^(2*n)/(1-x)^(3*n+1), {n, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
-
{a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)/(1-x+x*O(x^n))^(3*m+1)),n)}
for(n=0,25,print1(a(n),", "))
A361636
Diagonal of the rational function 1/(1 - v*w*x*y*z * (1 + 1/v + 1/w + 1/x + 1/y + 1/z)).
Original entry on oeis.org
1, 1, 1, 1, 121, 721, 2521, 6721, 128521, 1277641, 7539841, 32527441, 281835841, 3031468441, 23779315561, 139431015361, 962322302761, 9034098300361, 79726215362761, 569831799431881, 3952559737085401, 32660742079719601, 289694072383115401
Offset: 0
-
Table[Sum[(n + k)!/(k!^5*(n - 4*k)!), {k, 0, n/4}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 19 2023 *)
-
a(n) = sum(k=0, n\4, (n+k)!/(k!^5*(n-4*k)!));
A274785
Diagonal of the rational function 1/(1-(w*x*y*z + w*x*z + w*y + x*y + z)).
Original entry on oeis.org
1, 1, 25, 121, 2881, 23521, 484681, 5223625, 97949041, 1243490161, 22061635465, 309799010665, 5331441539425, 79799232449665, 1352284119871465, 21095036702450281, 355125946871044561, 5694209222592780625, 95705961654403180201, 1563714140278617173641, 26311422169994777663761
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..801
- A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- S. Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
-
seq(add(binomial(n+2*k, 2*k)*binomial(n, 2*k)*binomial(2*k, k)^2, k = 0..floor(n/2)), n = 0..20); # Peter Bala, Jan 27 2018
-
Table[Sum[Binomial[n + 2*k, 2*k]*Binomial[n, 2*k]*Binomial[2*k, k]^2, {k, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 17 2023 *)
-
my(x='x, y='y, z='z, w='w);
R = 1/(1-(w*x*y*z+w*x*z+w*y+x*y+z));
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(12, R, [x,y,z,w])
-
a(n) = sum(k=0, n\2, binomial(n + 2*k,2*k) * binomial(n,2*k) * binomial(2*k,k)^2) \\ Andrew Howroyd, Mar 18 2023
Showing 1-4 of 4 results.
Comments