A275027
a(n) = Sum_{k=0..n} C(n,k)^2*C(n-k,k), where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).
Original entry on oeis.org
1, 1, 5, 19, 85, 401, 1931, 9605, 48469, 248365, 1286605, 6726875, 35441275, 187935775, 1002122525, 5369287019, 28889315669, 156015203845, 845330354321, 4593724615175, 25029614166685, 136704935601785, 748273234994675, 4103928115592365, 22549175326327675, 124105065258631651, 684100888645922051, 3776354280849020005
Offset: 0
a(2) = 5 since a(2) = Sum_{k=0,1,2}C(2,k)^2*C(2-k,k) = C(2,0)^2*C(2,0) + C(2,1)^2*C(1,1) = 1 + 4 = 5.
-
a[n_]:=a[n]=Sum[Binomial[n,k]^2*Binomial[n-k,k],{k,0,n/2}]
Table[a[n],{n,0,27}]
a[n_] := HypergeometricPFQ[{-n, 1/2 - n/2, -n/2}, {1, 1}, -4];
Table[a[n], {n, 0, 27}] (* Peter Luschny, Mar 21 2018 *)
-
a(n) = sum(k=0, n, binomial(n,k)^2*binomial(n-k,k)); \\ Michel Marcus, Nov 13 2016
A274783
Diagonal of the rational function 1/(1 - (w*x*y*z + w*x*y + w*x*z + w*y*z + x*y*z)).
Original entry on oeis.org
1, 1, 1, 25, 121, 361, 3361, 24361, 116425, 790441, 6060121, 36888721, 238815721, 1760983225, 11968188961, 79763351305, 570661612585, 4040282139625, 27901708614985, 198090585115105, 1420583920034161, 10056659775872161, 71730482491962361, 517012699162717825, 3713833648541268121
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- S. Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
-
with(combinat):
seq(add((n+k)!/(k!^4*(n-3*k)!), k = 0..floor(n/3)), n = 0..20); # Peter Bala, Jan 27 2018
-
my(x='x, y='y, z='z, w='w);
R = 1/(1-(w*x*y*z+w*x*y+w*x*z+w*y*z+x*y*z));
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(20, R, [x,y,z,w])
A361636
Diagonal of the rational function 1/(1 - v*w*x*y*z * (1 + 1/v + 1/w + 1/x + 1/y + 1/z)).
Original entry on oeis.org
1, 1, 1, 1, 121, 721, 2521, 6721, 128521, 1277641, 7539841, 32527441, 281835841, 3031468441, 23779315561, 139431015361, 962322302761, 9034098300361, 79726215362761, 569831799431881, 3952559737085401, 32660742079719601, 289694072383115401
Offset: 0
-
Table[Sum[(n + k)!/(k!^5*(n - 4*k)!), {k, 0, n/4}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 19 2023 *)
-
a(n) = sum(k=0, n\4, (n+k)!/(k!^5*(n-4*k)!));
A208426
Expansion of Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-3*x)^(3*n+1).
Original entry on oeis.org
1, 3, 15, 99, 711, 5373, 42099, 338355, 2771127, 23028813, 193610385, 1643215005, 14056350075, 121040308665, 1048212778635, 9122168556819, 79727173530327, 699443806767525, 6156776010386481, 54356715121718349, 481194980656865721, 4270165015550478003
Offset: 0
G.f.: A(x) = 1 + 3*x + 15*x^2 + 99*x^3 + 711*x^4 + 5373*x^5 + 42099*x^6 + ...
where
A(x) = 1/(1-3*x) + 6*x^2/(1-3*x)^4 + 90*x^4/(1-3*x)^7 + 1680*x^6/(1-3*x)^10 + 34650*x^8/(1-3*x)^13 + 756756*x^10/(1-3*x)^16 + ...
-
Table[3^n * HypergeometricPFQ[{1/2 - n/2, -n/2, 1 + n}, {1, 1}, 4/9], {n, 0, 25}] (* Vaclav Kotesovec, Oct 07 2020 *)
-
{a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)/(1-3*x+x*O(x^n))^(3*m+1)),n)}
for(n=0,31,print1(a(n),", "))
-
a(n) = sum(k=0, n\2, (n+k)!/(k!^3*(n-2*k)!) * 3^(n-2*k)); \\ Gheorghe Coserea, Jul 04 2018
A278405
a(n) = Sum_{k=0..n} binomial(n,2k)^2*binomial(n-k,k).
Original entry on oeis.org
1, 1, 2, 19, 110, 476, 2477, 15093, 86830, 485290, 2826902, 16857116, 100034453, 594833357, 3574477090, 21611465819, 130955824174, 796195223398, 4860425688176, 29760574848750, 182655048136510, 1123720751229858, 6929124085148938, 42811398244528788
Offset: 0
a(3) = 19 since a(3) = C(3,2*0)^2*C(3-0,0) + C(3,2*1)^2*C(3-1,1) = 1 + 3^2*2 = 19.
G.f. = 1 + x + 2*x^2 + 19*x^3 + 110*x^4 + 476*x^5 + 2477*x^6 + 15093*x^7 + ...
-
a[n_]:=a[n]=Sum[Binomial[n,2k]^2*Binomial[n-k,k],{k,0,n/2}]
Table[a[n],{n,0,27}]
A278415
a(n) = Sum_{k=0..n} binomial(n, 2k)*binomial(n-k, k)*(-1)^k.
Original entry on oeis.org
1, 1, 0, -5, -16, -24, 15, 197, 576, 724, -1200, -8832, -22801, -21293, 76440, 408795, 922368, 499104, -4446588, -19025060, -37012416, -1673992, 245604832, 880263936, 1441226991, -908700649, -13088509200, -40222012703, -52991533744, 88167061704, 678172355415, 1805175708261, 1747974632448, -6237554623536, -34300087628480
Offset: 0
a(3) = -5 since a(3) = C(3, 2*0)*C(3-0, 0)(-1)^0 + C(3,2*1)*C(3-1,1)(-1)^1 = 1 - 6 = -5.
-
a[n_]:=Sum[Binomial[n,2k]Binomial[n-k,k](-1)^k,{k,0,n}]
Table[a[n],{n,0,34}]
Showing 1-6 of 6 results.
Comments