cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A349420 Primes that do not divide any term of A275027.

Original entry on oeis.org

2, 3, 7, 11, 31, 41, 67, 73, 79, 89, 97, 101, 103, 107, 127, 131, 137, 181, 211, 251, 277, 281, 283, 293, 307, 311, 317, 331, 347, 349, 359, 367, 383, 409, 419, 421, 431, 449, 463, 523, 547, 563, 577, 599, 607, 613, 617, 631, 677, 683, 691, 773, 787, 797, 821, 823, 827, 911, 977
Offset: 1

Views

Author

Michel Marcus, Nov 17 2021

Keywords

Comments

f(n) = A275027(n) is never divisible by a prime p if none of the values f(0), f(1), ..., f(p-1) is divisible by p. See Henningsen and Straub, who ask for an explicit characterization for these primes.

Crossrefs

Cf. A275027.

Programs

  • Mathematica
    f[n_] := f[n] = Sum[Binomial[n, k]^2*Binomial[n - k, k], {k, 0, n/2}]; q[p_] := AllTrue[Table[f[k], {k, 2, p - 1}], ! Divisible[#, p] &]; Select[Range[1000], PrimeQ[#] && q[#] &] (* Amiram Eldar, Nov 17 2021 *)
  • PARI
    f(n) = sum(k=0, n, binomial(n, k)^2*binomial(n-k, k)); \\ A275027
    isdiv(v, n) = {my(p=prime(n)); for (k=1, p, if (!(v[k] % p), return(1));); return(0);}
    lista(nn) = {my(p=prime(nn), v=vector(p, k, f(k-1)), list=List()); for(n=1, nn, if (! isdiv(v, n), listput(list, prime(n)););); Vec(list);}

A244973 a(n) = Sum_{k=0..n} (-1)^k*C(n, k)^2*C(2*k, k), where C(n, k) denotes the binomial coefficient n!/(k!*(n-k)!).

Original entry on oeis.org

1, -1, -1, 17, -65, 49, 881, -5489, 12223, 42785, -479951, 1746271, 440881, -39651457, 212039855, -326783183, -2817155137, 23175692033, -68726927071, -128775914225, 2285692892785, -10156877725985, 6169206210815, 196882990135745, -1274770281690575
Offset: 0

Views

Author

Zhi-Wei Sun, Jul 08 2014

Keywords

Comments

Zhi-Wei Sun introduced this sequence in arXiv:1407.0967. For any prime p > 5, he proved that Sum_{k=1..p-1} a(k)/k^2 == 0 (mod p) and Sum_{k=1..p-1} a(k)/k == 0 (mod p^2). This is quite similar to Wolstenholme's congruences Sum_{k=1..p-1} 1/k^2 == 0 (mod p) and Sum_{k=1..p-1} 1/k == 0 (mod p^2) for any prime p > 3.
Conjecture: For any prime p > 5 and positive integer n, the number (a(p*n) - a(n))/(p*n)^3 is always a p-adic integer.
The author proved a weaker version of this in arXiv:1610.03384. - Zhi-Wei Sun, Nov 12 2016

Examples

			a(3) = 17 since C(3,0)^2*C(2*0,0) - C(3,1)^2*C(2,1) + C(3,2)^2*C(4,2) - C(3,3)^2*C(6,3) = 1 - 18 + 54 - 20 = 17.
		

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([1/2, -n, -n], [1, 1], -4):
    seq(simplify(a(n)), n = 0..24);  # Peter Luschny, Mar 16 2025
  • Mathematica
    s[n_]:=Sum[Binomial[n,k]^2*Binomial[2k,k](-1)^k,{k,0,n}]
    Table[s[n],{n,0,20}]
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n,k)^2*binomial(2*k,k)); \\ Michel Marcus, Nov 13 2016

Formula

Recurrence (obtained via the Zeilberger algorithm):
(n+3)^2*(4n+5)*a(n+3) + (20n^3+125n^2+254n+165)*a(n+2) + (76n^3+399n^2+678n+375)*a(n+1) - 25*(n+1)^2*(4n+9)*a(n) = 0.
Lim_sup_{n->oo} |a(n)|^(1/n) = 5. - Vaclav Kotesovec, Jul 13 2014
a(n) = Sum_{k = 0..n} (-1)^(n-k)*C(n,2*k)^2*C(2*k,k) = Sum_{k = 0..n} (-1)^(n-k)*C(n,k)*C(n,2*k)*C(n-k,k). - Zhi-Wei Sun, Nov 12 2016
Conjecture: a(n) = Sum_{k = 0..n} binomial(n, k)*b(k), where b(n) = Sum_{k = 0..n} (-1)^k*binomial(n, k)^2*binomial(2*k, n). [Added Mar 16 2025: this conjecture can be verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package for Maple]. - Peter Bala, Jul 19 2024

A278405 a(n) = Sum_{k=0..n} binomial(n,2k)^2*binomial(n-k,k).

Original entry on oeis.org

1, 1, 2, 19, 110, 476, 2477, 15093, 86830, 485290, 2826902, 16857116, 100034453, 594833357, 3574477090, 21611465819, 130955824174, 796195223398, 4860425688176, 29760574848750, 182655048136510, 1123720751229858, 6929124085148938, 42811398244528788
Offset: 0

Views

Author

Zhi-Wei Sun, Nov 20 2016

Keywords

Comments

Conjecture: For any prime p > 5 and positive integer n, the number (a(p*n)-a(n))/(p*n)^3 is always a p-adic integer.
We have proved that for any prime p > 5 and positive integer n the number (a(p*n)-a(n))/(p^3*n^2) is always a p-adic integer.
Diagonal of the rational function 1 / ((1 + x)*(1 - x)*(1 - y)*(1 - z) - x*y*z). - Ilya Gutkovskiy, Apr 23 2025

Examples

			a(3) = 19 since a(3) = C(3,2*0)^2*C(3-0,0) + C(3,2*1)^2*C(3-1,1) = 1 + 3^2*2 = 19.
G.f. = 1 + x + 2*x^2 + 19*x^3 + 110*x^4 + 476*x^5 + 2477*x^6 + 15093*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[Binomial[n,2k]^2*Binomial[n-k,k],{k,0,n/2}]
    Table[a[n],{n,0,27}]

A278415 a(n) = Sum_{k=0..n} binomial(n, 2k)*binomial(n-k, k)*(-1)^k.

Original entry on oeis.org

1, 1, 0, -5, -16, -24, 15, 197, 576, 724, -1200, -8832, -22801, -21293, 76440, 408795, 922368, 499104, -4446588, -19025060, -37012416, -1673992, 245604832, 880263936, 1441226991, -908700649, -13088509200, -40222012703, -52991533744, 88167061704, 678172355415, 1805175708261, 1747974632448, -6237554623536, -34300087628480
Offset: 0

Views

Author

Zhi-Wei Sun, Nov 21 2016

Keywords

Comments

Conjecture: For any prime p > 3 and positive integer n, the number (a(p*n)-a(n))/(p*n)^2 is always a p-adic integer.
We are able to show that for any prime p > 3 and positive integer n the number (a(p*n)-a(n))/(p^2*n) is always a p-adic integer.
See also A275027 and A278405 for similar conjectures.

Examples

			a(3) = -5 since a(3) = C(3, 2*0)*C(3-0, 0)(-1)^0 + C(3,2*1)*C(3-1,1)(-1)^1 = 1 - 6 = -5.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[n,2k]Binomial[n-k,k](-1)^k,{k,0,n}]
    Table[a[n],{n,0,34}]

A382841 a(n) = Sum_{k=0..floor(n/2)} (binomial(n,k) * binomial(n-k,k))^2.

Original entry on oeis.org

1, 1, 5, 37, 181, 1301, 9401, 65465, 498037, 3796021, 29221705, 230396585, 1828448425, 14651160265, 118544522045, 965075143037, 7907605360757, 65162569952245, 539515760866889, 4486877961224297, 37463151704756281, 313909383754331801, 2638892573249746445, 22249830926517611917
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2025

Keywords

Comments

Diagonal of the rational function 1 / ((1 - x)*(1 - y)*(1 - z)*(1 - w) - (x*y)^2*z*w).

Crossrefs

Programs

  • Maple
    a:= n-> add(combinat[multinomial](n, n-2*k, k$2)^2, k=0..n/2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Apr 07 2025
  • Mathematica
    Table[Sum[(Binomial[n, k] Binomial[n - k, k])^2, {k, 0, Floor[n/2]}], {n, 0, 23}]
    Table[HypergeometricPFQ[{1/2 - n/2, 1/2 - n/2, -n/2, -n/2}, {1, 1, 1}, 16], {n, 0, 23}]
    Table[SeriesCoefficient[1/((1 - x) (1 - y) (1 - z) (1 - w) - (x y)^2 z w), {x, 0, n}, {y, 0, n}, {z, 0, n}, {w, 0, n}], {n, 0, 23}]

Formula

a(n) ~ 3^(2*n+2) / (2^(5/2) * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Apr 07 2025
a(n) = Sum_{k=0..floor(n/2)} A089627(n,k)^2. - Alois P. Heinz, Apr 07 2025

A381482 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)^2 * binomial(n-k,k) * 2^k.

Original entry on oeis.org

1, 1, 9, 37, 241, 1401, 8961, 57429, 377217, 2509201, 16876729, 114600069, 783903121, 5397915433, 37372017489, 259998843477, 1816376953857, 12736545070113, 89602978644969, 632223913939557, 4472680961409201, 31717890254271321, 225416254500886689, 1605197563027768917
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 22 2025

Keywords

Comments

Diagonal of the rational function 1 / ((1 - x)*(1 - y)*(1 - z) - 2*x^2*y*z).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]^2 Binomial[n - k, k] 2^k, {k, 0, Floor[n/2]}], {n, 0, 23}]
    Table[HypergeometricPFQ[{1/2 - n/2, -n, -n/2}, {1, 1}, -8], {n, 0, 23}]

Formula

a(n) = hypergeom( [1/2 - n/2, -n, -n/2], [1, 1], -8).
a(n) ~ sqrt(7/12 + sqrt(89/38)*cosh(arccosh((8567*sqrt(19/178))/1424)/3)/3) * ((1/3 + 8*sqrt(7)*(cosh(arccosh(1261/(448*sqrt(7)))/3)/3))^n / Pi) / n. - Vaclav Kotesovec, Apr 23 2025

A383524 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(n-k,k)^2.

Original entry on oeis.org

1, 1, 3, 13, 43, 171, 711, 2913, 12363, 53203, 230593, 1010703, 4463119, 19827679, 88594299, 397741893, 1793063883, 8113429419, 36832823289, 167701920759, 765577205433, 3503296744233, 16065995216109, 73824301464939, 339844364816559, 1567063753104471, 7237078197034221
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2025

Keywords

Comments

Diagonal of the rational function 1 / ((1-x)*(1-y)*(1-z) - x*y^2*z^2).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * Binomial[n-k,k]^2,{k,0,n}], {n,0,30}] (* Vaclav Kotesovec, Aug 30 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n, k)*binomial(n-k, k)^2);
Showing 1-7 of 7 results.