A349420 Primes that do not divide any term of A275027.
2, 3, 7, 11, 31, 41, 67, 73, 79, 89, 97, 101, 103, 107, 127, 131, 137, 181, 211, 251, 277, 281, 283, 293, 307, 311, 317, 331, 347, 349, 359, 367, 383, 409, 419, 421, 431, 449, 463, 523, 547, 563, 577, 599, 607, 613, 617, 631, 677, 683, 691, 773, 787, 797, 821, 823, 827, 911, 977
Offset: 1
Keywords
Links
- Michel Marcus, Table of n, a(n) for n = 1..289
- Joel A. Henningsen and Armin Straub, Generalized Lucas congruences and linear p-schemes, arXiv:2111.08641 [math.NT], 2021.
Crossrefs
Cf. A275027.
Programs
-
Mathematica
f[n_] := f[n] = Sum[Binomial[n, k]^2*Binomial[n - k, k], {k, 0, n/2}]; q[p_] := AllTrue[Table[f[k], {k, 2, p - 1}], ! Divisible[#, p] &]; Select[Range[1000], PrimeQ[#] && q[#] &] (* Amiram Eldar, Nov 17 2021 *)
-
PARI
f(n) = sum(k=0, n, binomial(n, k)^2*binomial(n-k, k)); \\ A275027 isdiv(v, n) = {my(p=prime(n)); for (k=1, p, if (!(v[k] % p), return(1));); return(0);} lista(nn) = {my(p=prime(nn), v=vector(p, k, f(k-1)), list=List()); for(n=1, nn, if (! isdiv(v, n), listput(list, prime(n)););); Vec(list);}
Comments