cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A245088 a(n) = (Sum_{k=0..n-1} (8*k^2+12*k+5)*A244973(k))/n^2.

Original entry on oeis.org

5, -5, -9, 115, -397, 85, 6625, -36181, 63915, 377365, -3357175, 10579245, 12408269, -295386005, 1383403247, -1317964405, -23051599205, 159765455077, -392146366775, -1358686166755, 16622987639325, -64283150090725, -10522422920465, 1532928077704325, -8583492124492507
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 11 2014

Keywords

Comments

Conjecture: All the terms are odd integers. Moreover, a(p) == 3 (mod p) for any prime p.
In 2015 Guo, Mao and Pan confirmed the conjecture partially by proving that n*a(n) is always an integer. - Zhi-Wei Sun, Nov 14 2015

Examples

			a(2) = -5 since (5*A244973(0)+(8+12+5)*A244973(1))/2^2 = (5*1+25*(-1))/4 = -5.
		

Crossrefs

Cf. A244973.

Programs

  • Mathematica
    s[n_]:=Sum[Binomial[n,k]^2*Binomial[2k,k](-1)^k,{k,0,n}]
    S[n_]:=Sum[(8k^2+12k+5)*s[k],{k,0,n-1}]/n^2
    Table[S[n],{n,1,25}]

Formula

Conjecture: +n^2*(23656*n-2233)*(n-1)*a(n) +(n-1)*(23656*n^3+655645*n^2-2273556*n+1915600)*a(n-1) -2*(n-2) *(177048*n^3-3748011*n^2+13870329*n-15407140)*a(n-2) -2*(n-3) *(2020728*n^3-18138829*n^2+63885382*n-73802216)*a(n-3) -5*(n-4) *(782552*n^3-11993599*n^2+55520403*n-80051816)*a(n-4) +125*(66088*n-203507)*(n-5)*(n-4)^2*a(n-5)=0. - R. J. Mathar, Jul 12 2014
Recurrence (of order 3): (n-1)*n^2*(8*n^2 - 36*n + 41)*(8*n^2 - 20*n + 13)*a(n) = -(n-1)*(8*n^2 - 36*n + 41)*(40*n^4 - 148*n^3 + 161*n^2 - 42*n + 4)*a(n-1) - (n-2)*(8*n^2 - 4*n + 1)*(152*n^4 - 1188*n^3 + 3427*n^2 - 4293*n + 1960)*a(n-2) + 25*(n-3)*(n-2)^2*(8*n^2 - 20*n + 13)*(8*n^2 - 4*n + 1)*a(n-3). - Vaclav Kotesovec, Jul 13 2014
Lim sup n->infinity |a(n)|^(1/n) = 5. - Vaclav Kotesovec, Jul 13 2014

A002893 a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(2*k,k).

Original entry on oeis.org

1, 3, 15, 93, 639, 4653, 35169, 272835, 2157759, 17319837, 140668065, 1153462995, 9533639025, 79326566595, 663835030335, 5582724468093, 47152425626559, 399769750195965, 3400775573443089, 29016970072920387, 248256043372999089
Offset: 0

Views

Author

Keywords

Comments

This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
a(n) is the 2n-th moment of the distance from the origin of a 3-step random walk in the plane. - Peter M. W. Gill (peter.gill(AT)nott.ac.uk), Feb 27 2004
a(n) is the number of Abelian squares of length 2n over a 3-letter alphabet. - Jeffrey Shallit, Aug 17 2010
Consider 2D simple random walk on honeycomb lattice. a(n) gives number of paths of length 2n ending at origin. - Sergey Perepechko, Feb 16 2011
Row sums of A318397 the square of A008459. - Peter Bala, Mar 05 2013
Conjecture: For each n=1,2,3,... the polynomial g_n(x) = Sum_{k=0..n} binomial(n,k)^2*binomial(2k,k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
a(n) is the sum of the squares of the coefficients of (x + y + z)^n. - Michael Somos, Aug 25 2018
a(n) is the constant term in the expansion of (1 + (1 + x) * (1 + y) + (1 + 1/x) * (1 + 1/y))^n. - Seiichi Manyama, Oct 28 2019

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 93*x^3 + 639*x^4 + 4653*x^5 + 35169*x^6 + ...
G.f.: A(x) = 1/(1-3*x) + 6*x^2*(1-x)/(1-3*x)^4 + 90*x^4*(1-x)^2/(1-3*x)^7 + 1680*x^6*(1-x)^3/(1-3*x)^10 + 34650*x^8*(1-x)^4/(1-3*x)^13 + ... - _Paul D. Hanna_, Feb 26 2012
		

References

  • Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

Programs

  • Magma
    [&+[Binomial(n, k)^2 * Binomial(2*k, k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 26 2018
    
  • Maple
    series(1/GaussAGM(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3)), x=0, 42) # Gheorghe Coserea, Aug 17 2016
    A002893 := n -> hypergeom([1/2, -n, -n], [1, 1], 4):
    seq(simplify(A002893(n)), n=0..20); # Peter Luschny, May 23 2017
  • Mathematica
    Table[Sum[Binomial[n,k]^2 Binomial[2k,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Aug 19 2011 *)
    a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {1/2, -n, -n}, {1, 1}, 4]]; (* Michael Somos, Oct 16 2013 *)
    a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^3, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 30 2013 *)
    a[ n_] := If[ n < 0, 0, Block[ {x, y, z},  Expand[(x + y + z)^n] /. {t_Integer -> t^2, x -> 1, y -> 1, z -> 1}]]; (* Michael Somos, Aug 25 2018 *)
  • PARI
    {a(n) = if( n<0, 0, n!^2 * polcoeff( besseli(0, 2*x + O(x^(2*n+1)))^3, 2*n))};
    
  • PARI
    {a(n) = sum(k=0, n, binomial(n, k)^2 * binomial(2*k, k))}; /* Michael Somos, Jul 25 2007 */
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3 * x^(2*m)*(1-x)^m / (1-3*x+x*O(x^n))^(3*m+1)),n)} \\ Paul D. Hanna, Feb 26 2012
    
  • PARI
    N = 42; x='x + O('x^N); v = Vec(1/agm(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3))); vector((#v+1)\2, k, v[2*k-1])  \\ Gheorghe Coserea, Aug 17 2016
    
  • SageMath
    def A002893(n): return simplify(hypergeometric([1/2,-n,-n], [1,1], 4))
    [A002893(n) for n in range(31)] # G. C. Greubel, Jan 21 2023

Formula

a(n) = Sum_{m=0..n} binomial(n, m) * A000172(m). [Barrucand]
D-finite with recurrence: (n+1)^2 a(n+1) = (10*n^2+10*n+3) * a(n) - 9*n^2 * a(n-1). - Matthijs Coster, Apr 28 2004
Sum_{n>=0} a(n)*x^n/n!^2 = BesselI(0, 2*sqrt(x))^3. - Vladeta Jovovic, Mar 11 2003
a(n) = Sum_{p+q+r=n} (n!/(p!*q!*r!))^2 with p, q, r >= 0. - Michael Somos, Jul 25 2007
a(n) = 3*A087457(n) for n>0. - Philippe Deléham, Sep 14 2008
a(n) = hypergeom([1/2, -n, -n], [1, 1], 4). - Mark van Hoeij, Jun 02 2010
G.f.: 2*sqrt(2)/Pi/sqrt(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z))) * EllipticK(8*z^(3/2)/(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z)))). - Sergey Perepechko, Feb 16 2011
G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)*(1-x)^n / (1-3*x)^(3*n+1). - Paul D. Hanna, Feb 26 2012
Asymptotic: a(n) ~ 3^(2*n+3/2)/(4*Pi*n). - Vaclav Kotesovec, Sep 11 2012
G.f.: 1/(1-3*x)*(1-6*x^2*(1-x)/(Q(0)+6*x^2*(1-x))), where Q(k) = (54*x^3 - 54*x^2 + 9*x -1)*k^2 + (81*x^3 - 81*x^2 + 18*x -2)*k + 33*x^3 - 33*x^2 +9*x - 1 - 3*x^2*(1-x)*(1-3*x)^3*(k+1)^2*(3*k+4)*(3*k+5)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: G(0)/(2*(1-9*x)^(2/3)), where G(k) = 1 + 1/(1 - 3*(3*k+1)^2*x*(1-x)^2/(3*(3*k+1)^2*x*(1-x)^2 - (k+1)^2*(1-9*x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 31 2013
a(n) = [x^(2n)] 1/agm(sqrt((1-3*x)*(1+x)^3), sqrt((1+3*x)*(1-x)^3)). - Gheorghe Coserea, Aug 17 2016
0 = +a(n)*(+a(n+1)*(+729*a(n+2) -1539*a(n+3) +243*a(n+4)) +a(n+2)*(-567*a(n+2) +1665*a(n+3) -297*a(n+4)) +a(n+3)*(-117*a(n+3) +27*a(n+4))) +a(n+1)*(+a(n+1)*(-324*a(n+2) +720*a(n+3) -117*a(n+4)) +a(n+2)*(+315*a(n+2) -1000*a(n+3) +185*a(n+4)) +a(n+3)*(+80*a(n+3) -19*a(n+4))) +a(n+2)*(+a(n+2)*(-9*a(n+2) +35*a(n+3) -7*a(n+4)) +a(n+3)*(-4*a(n+3) +a(n+4))) for all n in Z. - Michael Somos, Oct 30 2017
G.f. y=A(x) satisfies: 0 = x*(x - 1)*(9*x - 1)*y'' + (27*x^2 - 20*x + 1)*y' + 3*(3*x - 1)*y. - Gheorghe Coserea, Jul 01 2018
Sum_{k>=0} binomial(2*k,k) * a(k) / 6^(2*k) = A086231 = (sqrt(3)-1) * (Gamma(1/24) * Gamma(11/24))^2 / (32*Pi^3). - Vaclav Kotesovec, Apr 23 2023
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=3*(-1 + 3*x)*T(x) + (1 - 20*x + 27*x^2)*T'(x) + x*(-1 + x)*(-1 + 9*x)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = (3/64)*(1 + 3*x)*(1 - 15*x + 75*x^2 + 3*x^3);
g3 = -(1/512)*(-1 + 6*x + 3*x^2)*(1 - 12*x + 30*x^2 - 540*x^3 + 9*x^4);
which determine an elliptic surface with four singular fibers. (End)
a(n) = Sum_{k = 0..n} binomial(n, k)^2 * binomial(3*k, 2*n) (Almkvist, p. 16). - Peter Bala, May 22 2025

A275027 a(n) = Sum_{k=0..n} C(n,k)^2*C(n-k,k), where C(n,k) denotes the binomial coefficient n!/(k!*(n-k)!).

Original entry on oeis.org

1, 1, 5, 19, 85, 401, 1931, 9605, 48469, 248365, 1286605, 6726875, 35441275, 187935775, 1002122525, 5369287019, 28889315669, 156015203845, 845330354321, 4593724615175, 25029614166685, 136704935601785, 748273234994675, 4103928115592365, 22549175326327675, 124105065258631651, 684100888645922051, 3776354280849020005
Offset: 0

Views

Author

Zhi-Wei Sun, Nov 12 2016

Keywords

Comments

Conjecture: For any prime p > 5 and positive integer n, the number (a(p*n)-a(n))/(p*n)^3 is always a p-adic integer.
The author has proved that for any prime p > 5 and positive integer n the number (a(p*n)-a(n))/(p^3*n^2) is always a p-adic integer.
As a(n) = Sum_{k=0..n} C(n,k)*C(n,2k)*C(2k,k) and C(2k,k) = 2*C(2k-1,k-1) for k = 1,2,3,..., we see that a(n) is always odd. We guess that a(n) is congruent to one of 0, 1, -1 modulo 5.
Diagonal of the rational function 1 / ((1 - x)*(1 - y)*(1 - z) - x^2*y*z). - Ilya Gutkovskiy, Apr 23 2025

Examples

			a(2) = 5 since a(2) = Sum_{k=0,1,2}C(2,k)^2*C(2-k,k) = C(2,0)^2*C(2,0) + C(2,1)^2*C(1,1) = 1 + 4 = 5.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[Binomial[n,k]^2*Binomial[n-k,k],{k,0,n/2}]
    Table[a[n],{n,0,27}]
    a[n_] := HypergeometricPFQ[{-n, 1/2 - n/2, -n/2}, {1, 1}, -4];
    Table[a[n], {n, 0, 27}] (* Peter Luschny, Mar 21 2018 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)^2*binomial(n-k,k)); \\ Michel Marcus, Nov 13 2016

Formula

a(n) = Sum_{k=0..n}C(n,k)*C(n,2k)*C(2k,k).
By the Zeilberger algorithm, we have the recurrence (n+3)^2*(23n+25)*a(n+3) = 25*(n+1)^2*(23n+48)*a(n) + (391n^3+1989n^2+3288n+1750)*a(n+1) + (46n^3+280n^2+ 519n+265)*a(n+2) for all n >= 0.
a(n) = hypergeom([-n, 1/2 - n/2, -n/2], [1, 1], -4). - Peter Luschny, Mar 21 2018
a(n) ~ c * d^n / (Pi*n), where d = 5.729031537980930837932235459792820714... is the real root of the equation -25 - 17*d - 2*d^2 + d^3 = 0 and c = 1.107089291883984657933126801836156175486638498732... is the positive real root of the equation -125 + 1048*c^2 - 2576*c^4 + 1472*c^6 = 0. - Vaclav Kotesovec, Jun 09 2019
G.f.: hypergeom([1/12, 5/12],[1],-1728*(25*x^3+17*x^2+2*x-1)*x^7/(1-4*x-10*x^2+4*x^3+25*x^4)^3)/(1-4*x-10*x^2+4*x^3+25*x^4)^(1/4). - Mark van Hoeij, Nov 28 2024

A208425 Expansion of Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-x)^(3*n+1).

Original entry on oeis.org

1, 1, 7, 25, 151, 751, 4411, 24697, 146455, 862351, 5195257, 31392967, 191815339, 1177508515, 7276161907, 45154764025, 281492498455, 1761076827895, 11055132835705, 69600761349175, 439370198255401, 2780265190892641, 17631718101804517, 112038660509078695
Offset: 0

Views

Author

Paul D. Hanna, Feb 26 2012

Keywords

Comments

Compare g.f. to: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-2*x)^(3*n+1), which is a g.f. of the Franel numbers (A000172).
From Zhi-Wei Sun, Nov 12 2016: (Start)
Conjecture: (i) For any prime p > 3 and positive integer n, the number (a(p*n)-a(n))/(p*n)^3 is always a p-adic integer.
(ii) For any prime p == 1 (mod 3), we have Sum_{k=0..p-1}a(k) == C(2(p-1)/3,(p-1)/3) (mod p^2). For any prime p == 2 (mod 3), we have Sum_{k=0..p-1}a(k) == 2p/C(2(p+1)/3,(p+1)/3) (mod p^2).
We have proved part (i) of this conjecture for n = 1. (End)
Diagonal of rational functions 1/(1 - x*y - y*z - x*z - x*y*z), 1/(1 - x*y + y*z + x*z - x*y*z). - Gheorghe Coserea, Jul 03 2018
Number of paths from (0,0,0) to (n,n,n) using steps (1,1,0), (1,0,1), (0,1,1), and (1,1,1). - William J. Wang, Dec 07 2020
Diagonal of the rational function 1/(1 - (x^2 + y^2 + z^2 + x*y*z)). - Seiichi Manyama, Jul 04 2025

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 25*x^3 + 151*x^4 + 751*x^5 + 4411*x^6 +...
where
A(x) = 1/(1-x) + 6*x^2/(1-x)^4 + 90*x^4/(1-x)^7 + 1680*x^6/(1-x)^10 + 34650*x^8/(1-x)^13 + 756756*x^10/(1-x)^16 +...
		

Crossrefs

Programs

  • Maple
    series(hypergeom([1/3, 2/3], [1], 27*x^2/(1 - x)^3)/(1 - x), x=0, 25): seq(coeff(%, x, n), n=0..23);  # Mark van Hoeij, May 20 2013
    a := n -> hypergeom([1/2 - n/2, -n/2, n + 1], [1, 1], 4); seq(simplify(a(n)), n=0..23);  # Peter Luschny, Jan 11 2025
  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[(3*n)!/n!^3 * x^(2*n)/(1-x)^(3*n+1), {n, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n, (3*m)!/m!^3*x^(2*m)/(1-x+x*O(x^n))^(3*m+1)),n)}
    for(n=0,25,print1(a(n),", "))

Formula

Conjecture: n^2*(3*n-5)*a(n) +(-9*n^3+24*n^2-17*n+4) *a(n-1) -(3*n-4) *(24*n^2-56*n+27)*a(n-2) -(3*n-2)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Mar 10 2016
a(n) ~ sqrt(1/2 + sqrt(13)*cos(arctan(53*sqrt(3)/19)/3)/6) * (1 + 6*cos(Pi/9))^n / (Pi*n). - Vaclav Kotesovec, Jul 05 2016
It is easy to show that a(n) = Sum_{k=0..n}C(n,k)*C(n-k,k)*C(n+k,k) = Sum_{k=0..n}C(n+k,k)*C(n,2k)*C(2k,k). By this formula and the Zeilberger algorithm, we confirm the recurrence conjectured by R. J. Mathar. - Zhi-Wei Sun, Nov 12 2016
G.f. y=A(x) satisfies: 0 = x*(x + 2)*(x^3 + 24*x^2 + 3*x - 1)*y'' + (3*x^4 + 56*x^3 + 147*x^2 + 12*x - 2)*y' + (x^3 + 9*x^2 + 42*x + 2)*y. - Gheorghe Coserea, Jul 03 2018
a(n) = hypergeom([1/2 - n/2, -n/2, n + 1], [1, 1], 4). - Peter Luschny, Jan 11 2025

A278405 a(n) = Sum_{k=0..n} binomial(n,2k)^2*binomial(n-k,k).

Original entry on oeis.org

1, 1, 2, 19, 110, 476, 2477, 15093, 86830, 485290, 2826902, 16857116, 100034453, 594833357, 3574477090, 21611465819, 130955824174, 796195223398, 4860425688176, 29760574848750, 182655048136510, 1123720751229858, 6929124085148938, 42811398244528788
Offset: 0

Views

Author

Zhi-Wei Sun, Nov 20 2016

Keywords

Comments

Conjecture: For any prime p > 5 and positive integer n, the number (a(p*n)-a(n))/(p*n)^3 is always a p-adic integer.
We have proved that for any prime p > 5 and positive integer n the number (a(p*n)-a(n))/(p^3*n^2) is always a p-adic integer.
Diagonal of the rational function 1 / ((1 + x)*(1 - x)*(1 - y)*(1 - z) - x*y*z). - Ilya Gutkovskiy, Apr 23 2025

Examples

			a(3) = 19 since a(3) = C(3,2*0)^2*C(3-0,0) + C(3,2*1)^2*C(3-1,1) = 1 + 3^2*2 = 19.
G.f. = 1 + x + 2*x^2 + 19*x^3 + 110*x^4 + 476*x^5 + 2477*x^6 + 15093*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[Binomial[n,2k]^2*Binomial[n-k,k],{k,0,n/2}]
    Table[a[n],{n,0,27}]

A278415 a(n) = Sum_{k=0..n} binomial(n, 2k)*binomial(n-k, k)*(-1)^k.

Original entry on oeis.org

1, 1, 0, -5, -16, -24, 15, 197, 576, 724, -1200, -8832, -22801, -21293, 76440, 408795, 922368, 499104, -4446588, -19025060, -37012416, -1673992, 245604832, 880263936, 1441226991, -908700649, -13088509200, -40222012703, -52991533744, 88167061704, 678172355415, 1805175708261, 1747974632448, -6237554623536, -34300087628480
Offset: 0

Views

Author

Zhi-Wei Sun, Nov 21 2016

Keywords

Comments

Conjecture: For any prime p > 3 and positive integer n, the number (a(p*n)-a(n))/(p*n)^2 is always a p-adic integer.
We are able to show that for any prime p > 3 and positive integer n the number (a(p*n)-a(n))/(p^2*n) is always a p-adic integer.
See also A275027 and A278405 for similar conjectures.

Examples

			a(3) = -5 since a(3) = C(3, 2*0)*C(3-0, 0)(-1)^0 + C(3,2*1)*C(3-1,1)(-1)^1 = 1 - 6 = -5.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[n,2k]Binomial[n-k,k](-1)^k,{k,0,n}]
    Table[a[n],{n,0,34}]

A336634 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(-x) * BesselI(0,2*sqrt(x))^2.

Original entry on oeis.org

1, 1, 0, -4, 14, -18, -168, 1920, -11898, 27398, 582896, -13028904, 183020620, -2061910004, 17930433744, -65293856160, -1965585556410, 69343044999750, -1519055329884960, 26755366818127560, -374375460816570780, 2924763867241325220
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2020

Keywords

Crossrefs

Programs

  • Maple
    rec:= n*a(n) = -(3*n^2 - 7*n + 3)*a(n - 1) + (7 - 3*n)*(n - 1)^2*a(n - 2) - (n - 1)^2*(n - 2)^2*a(n - 3):
    f:= gfun:-rectoproc({rec,a(0)=1,a(1)=1,a(2)=0},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Jul 30 2020
  • Mathematica
    nmax = 21; CoefficientList[Series[Exp[-x] BesselI[0, 2 Sqrt[x]]^2, {x, 0, nmax}], x] Range[0, nmax]!^2
    Table[(-1)^n n! HypergeometricPFQ[{1/2, -n}, {1, 1}, 4], {n, 0, 21}]
    Table[Sum[(-1)^(n - k) Binomial[n, k]^2 Binomial[2 k, k] (n - k)!, {k, 0, n}], {n, 0, 21}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k)^2 * binomial(2*k,k) * (n-k)!); \\ Michel Marcus, Jul 30 2020

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k)^2 * binomial(2*k,k) * (n-k)!.
D-finite with recurrence: n*a(n) = -(3*n^2 - 7*n + 3)*a(n - 1) + (7 - 3*n)*(n - 1)^2*a(n - 2) - (n - 1)^2*(n - 2)^2*a(n - 3). - Robert Israel, Jul 30 2020
Showing 1-7 of 7 results.