cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: William J. Wang

William J. Wang's wiki page.

William J. Wang has authored 1 sequences.

A339390 Number of paths from (0,0,0) to (n,n,n) using steps (1,0,0), (0,1,0), (0,0,1), (1,1,1), and (2,2,2).

Original entry on oeis.org

1, 7, 116, 2397, 54845, 1329644, 33464881, 864627351, 22776683200, 609024723535, 16478750543705, 450190397799036, 12397538372467109, 343712858468053319, 9584085091610235280, 268571959802603851989, 7558772037473679862681, 213548821612723752662596
Offset: 0

Author

William J. Wang, Dec 02 2020

Keywords

Comments

The ratio of any two consecutive terms of this sequence a(n+1)/a(n) seems to grow asymptotically to ~30 as n increases (observation).

Crossrefs

Programs

  • Maple
    b:= proc(l) option remember; `if`(l[3]=0, 1,
          add((f-> `if`(f[1]<0, 0, b(f)))(sort(l-h)), h=
          [[1, 0$2], [0, 1, 0], [0$2, 1], [1$3], [2$3]]))
        end:
    a:= n-> b([n$3]):
    seq(a(n), n=0..20);  # Alois P. Heinz, Dec 04 2020
    # second Maple program:
    a:= proc(n) local t; 1/(1-x-y-z-x*y*z-(x*y*z)^2);
          for t in [x, y, z] do coeftayl(%, t=0, n) od
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Dec 05 2020
    # third Maple program:
    a:= proc(n) option remember; `if`(n<6, [1, 7, 116, 2397, 54845,
          1329644][n+1], ((3*n-7)*(3*n-2)*(30*n^2-50*n+13)*a(n-1) -(3*n-2)
          *(3*n-5)*a(n-2) -(45*n^4-300*n^3+677*n^2-560*n+108)*a(n-3)
          +(3*n-2)*(3*n-11)*a(n-4) +(3*n-1)*(9*n^3-75*n^2+197*n-154)*a(n-5)
          +(3*n-1)*(3*n-4)*(n-4)^2*a(n-6)) / ((3*n-4)*(3*n-7)*n^2))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Dec 05 2020
  • Mathematica
    b[l_] := b[l] = If[l[[3]] == 0, 1,
         Sum[Function[f, If[f[[1]] < 0, 0, b[f]]][Sort[l-h]], {h,
         {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 1, 1}, {2, 2, 2}}}]];
    a[n_] := b[{n, n, n}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 30 2022, after Alois P. Heinz *)

Formula

From Alois P. Heinz, Dec 05 2020: (Start)
a(n) = [(x*y*z)^n] 1/(1-x-y-z-x*y*z-(x*y*z)^2).
a(n) = ((3*n-7)*(3*n-2)*(30*n^2-50*n+13)*a(n-1) - (3*n-2)*(3*n-5)*a(n-2) - (45*n^4-300*n^3+677*n^2-560*n+108)*a(n-3) + (3*n-2)*(3*n-11)*a(n-4) + (3*n-1)*(9*n^3-75*n^2+197*n-154)*a(n-5) + (3*n-1)*(3*n-4)*(n-4)^2*a(n-6)) / ((3*n-4)*(3*n-7)*n^2) for n>=6. (End)