A361712
a(n) = Sum_{k = 0..n-1} binomial(n,k)^2*binomial(n+k,k)*binomial(n+k-1,k).
Original entry on oeis.org
0, 1, 25, 649, 16921, 448751, 12160177, 336745053, 9513822745, 273585035755, 7988828082775, 236367018090017, 7072779699975601, 213701611408357567, 6511338458568750853, 199850727914988936149, 6173376842290368719385, 191776434791965521115235, 5987554996434696230487955
Offset: 0
a(7) - a(1) = (2^2)*(7^5)*5009 == 0 (mod 7^5)
a(11) - a(1) = (2^5)*(11^5)*45864163 == 0 (mod 11^5)
a(7^2) - a(7) = (2*3)*(7^9)*377052719*240136524699189343838527* 17965610580703155723668147409587 == 0 (mod 7^9)
-
seq(add(binomial(n,k)^2*binomial(n+k,k)*binomial(n+k-1,k), k = 0..n-1), n = 0..25);
# Alternative:
A361712 := n -> hypergeom([-n, -n, n, n + 1], [1, 1, 1], 1) - binomial(2*n, n)*binomial(2*n-1, n): seq(simplify(A361712(n)), n = 0..18); # Peter Luschny, Mar 27 2023
-
A361712[n_] := HypergeometricPFQ[{-n, -n, n, n+1}, {1, 1, 1}, 1] - Binomial[2*n, n]*Binomial[2*n-1, n]; Array[A361712, 20, 0] (* Paolo Xausa, Jul 10 2024 *)
A361717
a(n) = Sum_{k = 0..n-1} binomial(n-1,k)^2*binomial(n+k,k).
Original entry on oeis.org
0, 1, 4, 27, 216, 1875, 17088, 160867, 1549936, 15195843, 151017780, 1517232189, 15379549056, 157058738343, 1614039427224, 16676755365555, 173118505001952, 1804500885273123, 18877476988765404, 198120856336103017, 2085303730716475960
Offset: 0
a(5) = 3*(5^4); a(7) = (7^4)*67; a(11) = 3*(11^4)*34543; a(13) = (3^3)*(13^4)*203669.
-
seq( add(binomial(n-1,k)^2*binomial(n+k,k), k = 0..n), n = 0..20);
-
A361717[n_]:=Sum[Binomial[n-1,k]^2Binomial[n+k,k],{k,0,n-1}];Array[A361717,30,0] (* Paolo Xausa, Oct 06 2023 *)
-
a(n) = sum(k=0, n-1, binomial(n-1,k)^2*binomial(n+k,k)) \\ Winston de Greef, Mar 27 2023
A361713
a(n) = Sum_{k = 0..n-1} binomial(n,k)^2 * binomial(n+k-1,k)^2.
Original entry on oeis.org
0, 1, 17, 406, 10257, 268126, 7213166, 198978074, 5609330705, 161095277710, 4700175389142, 138986764820410, 4157185583199534, 125568602682092818, 3825026187780837266, 117376010145070696906, 3625095243230562818065, 112596592142021739522670, 3514965607470183733302470
Offset: 0
-
seq(add(binomial(n,k)^2*binomial(n+k-1,k)^2, k = 0..n-1), n = 0..25);
# Alternative:
A361713 := n -> hypergeom([-n, -n, n, n], [1, 1, 1], 1) - binomial(2*n - 1, n)^2:
seq(simplify(A361713(n)), n = 0..18); # Peter Luschny, Mar 27 2023
-
A361713[n_] := HypergeometricPFQ[{-n, -n, n, n}, {1, 1, 1}, 1] - Binomial[2*n-1, n]^2; Array[A361713, 20, 0] (* Paolo Xausa, Jul 11 2024 *)
A361714
a(n) = Sum_{k = 0..n-1} (-1)^(n+k+1)*binomial(n,k)*binomial(n+k-1,k)^2.
Original entry on oeis.org
0, 1, 7, 82, 1063, 14376, 199204, 2806770, 40053031, 577468684, 8397778882, 123029274666, 1814016998116, 26898142793068, 400836647993292, 5999796281063082, 90162110212198695, 1359731143731297396, 20571691450059355174, 312134224830052880826, 4748435338386591995938
Offset: 0
Examples of supercongruence:
a(11) - a(1) = 23029274666 - 1 = 5*(11^5)*152783 == 0 (mod 11^5).
a(13) - a(1) = 26898142793068 - 1 = (3^2)*7*(13^5)*1149913 == 0 (mod 13^5).
a(5^2) - a(5) = 3994642669575050040375014376 - 14376 = (2^6)*(3^6)*(5^9)*103* 425601520324429 == 0 (mod 5^9).
-
seq(add((-1)^(n+k+1)*binomial(n,k)*binomial(n+k-1,k)^2, k = 0..n-1), n = 0..20);
# Alternative:
A361714 := n -> binomial(2*n-1, n)^2 - (-1)^n*hypergeom([-n, n, n], [1, 1], 1):
seq(simplify(A361714(n)), n = 0..20); # Peter Luschny, Mar 27 2023
-
A361714[n_] := Binomial[2*n-1, n]^2 - (-1)^n*HypergeometricPFQ[{-n, n, n}, {1, 1}, 1]; Array[A361714, 20, 0] (* Paolo Xausa, Jul 11 2024 *)
Showing 1-4 of 4 results.
Comments