A361712
a(n) = Sum_{k = 0..n-1} binomial(n,k)^2*binomial(n+k,k)*binomial(n+k-1,k).
Original entry on oeis.org
0, 1, 25, 649, 16921, 448751, 12160177, 336745053, 9513822745, 273585035755, 7988828082775, 236367018090017, 7072779699975601, 213701611408357567, 6511338458568750853, 199850727914988936149, 6173376842290368719385, 191776434791965521115235, 5987554996434696230487955
Offset: 0
a(7) - a(1) = (2^2)*(7^5)*5009 == 0 (mod 7^5)
a(11) - a(1) = (2^5)*(11^5)*45864163 == 0 (mod 11^5)
a(7^2) - a(7) = (2*3)*(7^9)*377052719*240136524699189343838527* 17965610580703155723668147409587 == 0 (mod 7^9)
-
seq(add(binomial(n,k)^2*binomial(n+k,k)*binomial(n+k-1,k), k = 0..n-1), n = 0..25);
# Alternative:
A361712 := n -> hypergeom([-n, -n, n, n + 1], [1, 1, 1], 1) - binomial(2*n, n)*binomial(2*n-1, n): seq(simplify(A361712(n)), n = 0..18); # Peter Luschny, Mar 27 2023
-
A361712[n_] := HypergeometricPFQ[{-n, -n, n, n+1}, {1, 1, 1}, 1] - Binomial[2*n, n]*Binomial[2*n-1, n]; Array[A361712, 20, 0] (* Paolo Xausa, Jul 10 2024 *)
A361717
a(n) = Sum_{k = 0..n-1} binomial(n-1,k)^2*binomial(n+k,k).
Original entry on oeis.org
0, 1, 4, 27, 216, 1875, 17088, 160867, 1549936, 15195843, 151017780, 1517232189, 15379549056, 157058738343, 1614039427224, 16676755365555, 173118505001952, 1804500885273123, 18877476988765404, 198120856336103017, 2085303730716475960
Offset: 0
a(5) = 3*(5^4); a(7) = (7^4)*67; a(11) = 3*(11^4)*34543; a(13) = (3^3)*(13^4)*203669.
-
seq( add(binomial(n-1,k)^2*binomial(n+k,k), k = 0..n), n = 0..20);
-
A361717[n_]:=Sum[Binomial[n-1,k]^2Binomial[n+k,k],{k,0,n-1}];Array[A361717,30,0] (* Paolo Xausa, Oct 06 2023 *)
-
a(n) = sum(k=0, n-1, binomial(n-1,k)^2*binomial(n+k,k)) \\ Winston de Greef, Mar 27 2023
A361713
a(n) = Sum_{k = 0..n-1} binomial(n,k)^2 * binomial(n+k-1,k)^2.
Original entry on oeis.org
0, 1, 17, 406, 10257, 268126, 7213166, 198978074, 5609330705, 161095277710, 4700175389142, 138986764820410, 4157185583199534, 125568602682092818, 3825026187780837266, 117376010145070696906, 3625095243230562818065, 112596592142021739522670, 3514965607470183733302470
Offset: 0
-
seq(add(binomial(n,k)^2*binomial(n+k-1,k)^2, k = 0..n-1), n = 0..25);
# Alternative:
A361713 := n -> hypergeom([-n, -n, n, n], [1, 1, 1], 1) - binomial(2*n - 1, n)^2:
seq(simplify(A361713(n)), n = 0..18); # Peter Luschny, Mar 27 2023
-
A361713[n_] := HypergeometricPFQ[{-n, -n, n, n}, {1, 1, 1}, 1] - Binomial[2*n-1, n]^2; Array[A361713, 20, 0] (* Paolo Xausa, Jul 11 2024 *)
A361715
a(n) = Sum_{k = 0..n-1} binomial(n,k)^2*binomial(n+k-1,k).
Original entry on oeis.org
0, 1, 9, 82, 745, 6876, 64764, 621860, 6070761, 60085720, 601493134, 6078225792, 61907445340, 634751002718, 6545478537810, 67830084149832, 705950951578089, 7375212511115184, 77310175072063914, 812839577957617640, 8569327793354169870, 90562666708303706642, 959212007563384494522, 10180245921386807485152
Offset: 0
-
seq( add( binomial(n,k)^2*binomial(n+k-1,k), k = 0..n-1), n = 0..25);
#faster alternative program
P(n) := 145*n^4 - 1217*n^3 + 3763*n^2 - 5079*n + 2532:
Q(n) := (n - 1)*(n - 2)*(2175*n^6 - 20140*n^5 + 73132*n^4 - 131786*n^3 + 122789*n^2 - 55626*n + 9936):
R(n) := (n - 2)*(6235*n^7 - 67846*n^6 + 304860*n^5 - 731294*n^4 + 1008701*n^3 - 798060*n^2 + 335340*n - 58320):
a := proc(n) option remember; if n = 0 then 0 elif n = 1 then 1 elif n = 2 then 9 else (Q(n)*a(n-1) - R(n)*a(n-2) - 2*(n - 1)*(n - 3)^2*(2*n - 5)*P(n+1)*a(n-3))/((n - 1)*(n - 2)*n^2*P(n)) end if; end:
seq(a(n), n = 0..25);
# Alternative:
A361715 := n -> hypergeom([-n, -n, n], [1, 1], 1) - binomial(2*n-1, n):
seq(simplify(A361715(n)), n = 0..23); # Peter Luschny, Mar 27 2023
-
Table[Sum[Binomial[n,k]^2 Binomial[n+k-1,k],{k,0,n-1}],{n,0,30}] (* Harvey P. Dale, Nov 01 2023 *)
Showing 1-4 of 4 results.
Comments