cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361718 Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 15, 9, 1, 0, 316, 198, 28, 1, 0, 16885, 10710, 1610, 75, 1, 0, 2174586, 1384335, 211820, 10575, 186, 1, 0, 654313415, 416990763, 64144675, 3268125, 61845, 441, 1, 0, 450179768312, 286992935964, 44218682312, 2266772550, 43832264, 336924, 1016, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 02 2023

Keywords

Comments

Also the number of sets of n nonempty subsets of {1..n}, k of which are singletons, such that there is only one way to choose a different element from each. For example, row n = 3 counts the following set-systems:
{{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{3},{1,2}}
{{2},{1,2},{1,3}} {{1},{3},{2,3}}
{{2},{1,2},{2,3}} {{2},{3},{1,2}}
{{2},{1,3},{2,3}} {{2},{3},{1,3}}
{{3},{1,2},{1,3}} {{1},{2},{1,2,3}}
{{3},{1,2},{2,3}} {{1},{3},{1,2,3}}
{{3},{1,3},{2,3}} {{2},{3},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}

Examples

			Triangle begins:
  1;
  0,     1;
  0,     2,     1;
  0,    15,     9,    1;
  0,   316,   198,   28,  1;
  0, 16885, 10710, 1610, 75, 1;
  ...
		

Crossrefs

Cf. A058876 (mirror), A361579, A224069.
Row-sums are A003024, unlabeled A003087.
Column k = 1 is A003025(n) = |n*A134531(n)|.
Column k = n-1 is A058877.
For fixed sinks we get A368602.
A058891 counts set-systems, unlabeled A000612.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
    nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]

Formula

T(n,k) = A368602(n,k) * binomial(n,k). - Gus Wiseman, Jan 03 2024