cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361727 Diagonal of rational function 1/(1 - (1 + x*y) * (x^3 + y^3)).

Original entry on oeis.org

1, 0, 0, 2, 4, 2, 6, 24, 36, 44, 126, 300, 470, 860, 2080, 4192, 7420, 15260, 33124, 64568, 124558, 259632, 535668, 1055460, 2118414, 4373412, 8872644, 17765396, 36138168, 73972404, 149793424, 303140552, 618565948, 1261454064, 2561056212, 5211145368
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*k, k)*binomial(2*k, n-3*k));

Formula

G.f.: 1/sqrt(1 - 4 * x^3 * (1+x)^2).
a(n) = Sum_{k=0..floor(n/3)} binomial(2*k,k) * binomial(2*k,n-3*k).
From Vaclav Kotesovec, Mar 22 2023: (Start)
Recurrence: n*a(n) = 2*(2*n-3)*a(n-3) + 8*(n-2)*a(n-4) + 2*(2*n-5)*a(n-5).
a(n) ~ 1 / (sqrt((5 - 8*r^3 - 8*r^4)*Pi*n) * r^n), where r = 0.484163615233802299545617907511361266999078019358842974840776720... is the real root of the equation -1 + 4*r^3 + 8*r^4 + 4*r^5 = 0. (End)