cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361750 Terms of A329150 that have several preimages.

Original entry on oeis.org

23, 223, 230, 232, 233, 235, 237, 323, 523, 723, 1123, 1323, 1723, 1923, 2023, 2223, 2230, 2232, 2233, 2235, 2237, 2300, 2302, 2303, 2305, 2307, 2311, 2313, 2317, 2319, 2320, 2322, 2323, 2325, 2327, 2330, 2332, 2333, 2335, 2337, 2350, 2352, 2353, 2355, 2357, 2370, 2372, 2373, 2375, 2377
Offset: 1

Views

Author

Bernard Schott, Mar 23 2023

Keywords

Comments

From k = 1 to 9, A329147(k) has more than one preimage only for k = 9 since A329147(9) = A329147(12) = 23; so, all terms of this sequence have in their decimal expansion the two-digit integer '23'; it follows that when || denotes concatenation, the terms of this sequence are of the form:
X||23 as 223, 323, 523, 723, 1123, 1323, 1723, 1923, 2023, 2223, ... or,
23||Y as 230, 232, 233, 235, 237, 2300, 2302, 2303, 2305, 2307, 2311, ... or,
X||23||Y as 2230, 2232, 2233, 2235, 2237, 3230, 3232, 3233, ...
Every term of this sequence has 2^q preimages, and the smallest terms with exactly 2^q preimages for q >= 1 are 23, 2323, 232323, ... with q times the 2-digit number 23 in its decimal expansion; hence, the 8 preimages of 232323 are 999, 9912, 9129, 91212, 1299, 12912, 12129 and 121212.

Examples

			One example for each type:
23||2 = 232 = A329147(91) = A329147(121).
7||23 = 723 = A329147(49) = A329147(412).
2||23||5 = 2235 = A329147(193) = A329147(1123).
23||23 = 2323 = A329147(99) = A329147(129) = A329147(1212) = A329147(912).
		

Crossrefs

Programs

  • Mathematica
    p[n_] := If[n > 0, Prime[n], 0]; seq[ndigmax_] := Module[{t = Table[FromDigits[ Flatten @ IntegerDigits @ (p /@ IntegerDigits[n]) ], {n, 1, 10^ndigmax - 1}]}, Sort @ Select[Tally[t], First[#] < 10^ndigmax && Last[#] > 1 &][[;; , 1]]]; seq[4] (* Amiram Eldar, Mar 23 2023 *)
  • PARI
    f(n) = if (n, fromdigits(concat(apply(d -> if (d, digits(prime(d)), [0]), digits(n)))), 0); \\ A329147
    lista(nn) = {my(map = Map()); for (n=1, nn, my(m = f(n)); if (mapisdefined(map, m), mapput(map, m, 1+mapget(map, m)), mapput(map, m, 0));); my(list = List()); for (n=1, nn, if (mapisdefined(map, n), my(v = mapget(map, n)); if (#v > 0, listput(list, n)););); Vec(list);} \\ Michel Marcus, Mar 24 2023