cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361778 Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^n * ((-x)^(n-1) - 2*A(x))^n.

Original entry on oeis.org

1, 2, 7, 27, 109, 459, 2006, 9017, 41384, 193048, 912571, 4361939, 21045710, 102361864, 501349447, 2470556294, 12240270901, 60935582862, 304660949343, 1529125824203, 7701783889261, 38915600049447, 197206343307012, 1002023916642621, 5103911800972155, 26056404563941575
Offset: 0

Views

Author

Paul D. Hanna, May 10 2023

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 7*x^2 + 27*x^3 + 109*x^4 + 459*x^5 + 2006*x^6 + 9017*x^7 + 41384*x^8 + 193048*x^9 + 912571*x^10 + ...
SPECIFIC VALUES.
A(1/7) = 1.63053651133635034184414884744745628155427916612173429157...
A(1/6) = 1.99892384479086071017436459041327119822244448085100733509...
A(x) = 2 at x = 0.166713109990638926829644490786806133084979604287174064...
Radius of convergence r and the value A(r) are given by
r = 0.182033752413024354859591633469061831146023401652842514076551...
A(r) = 2.63999965897091399750291467200041973752650665197493948118984006...
1/r = 5.4934867119096473651972990947886642212447897087082048838...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
    A[#A] = polcoeff( sum(m=-#A, #A, x^m * ((-x)^(m-1) - 2*Ser(A))^m ), #A)/2); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) 1 = Sum_{n=-oo..+oo} x^n * ((-x)^(n-1) - 2*A(x))^n.
(2) 1 = Sum_{n=-oo..+oo} x^(2*n+1) * (2*A(x) - (-x)^n)^n.
(3) 2*A(x) = Sum_{n=-oo..+oo} x^(3*n+1) * ((-x)^n - 2*A(x))^n.
(4) 1 = Sum_{n=-oo..+oo} x^(n^2) / (1 - 2*A(x)*(-x)^(n+1))^n.
(5) 1 = Sum_{n=-oo..+oo} x^(n^2) / (1 - 2*A(x)*(-x)^(n+1))^(n+1).
(6) 2*A(x) = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 - 2*A(x)*(-x)^(n+1))^(n+1).
(7) 0 = Sum_{n=-oo..+oo} x^(2*n) * (2*A(x) - (-x)^n)^(n+1).
(8) 0 = Sum_{n=-oo..+oo} x^(3*n) * ((-x)^(n-1) - 2*A(x))^(n+1).