A361781 A(n,k) is the n-th term of the k-th inverse binomial transform of the Bell numbers (A000110); square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 0, 2, 1, -1, 1, 5, 1, -2, 2, 1, 15, 1, -3, 5, -3, 4, 52, 1, -4, 10, -13, 7, 11, 203, 1, -5, 17, -35, 36, -10, 41, 877, 1, -6, 26, -75, 127, -101, 31, 162, 4140, 1, -7, 37, -139, 340, -472, 293, -21, 715, 21147, 1, -8, 50, -233, 759, -1573, 1787, -848, 204, 3425, 115975
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 0, -1, -2, -3, -4, -5, -6, ... 2, 1, 2, 5, 10, 17, 26, 37, ... 5, 1, -3, -13, -35, -75, -139, -233, ... 15, 4, 7, 36, 127, 340, 759, 1492, ... 52, 11, -10, -101, -472, -1573, -4214, -9685, ... 203, 41, 31, 293, 1787, 7393, 23711, 63581, ... 877, 162, -21, -848, -6855, -35178, -134873, -421356, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..150, flattened
Crossrefs
Programs
-
Magma
T:= func< n,k | (&+[(-k)^j*Binomial(n,j)*Bell(n-j): j in [0..n]]) >; A361781:= func< n,k | T(k, n-k) >; [A361781(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 12 2024
-
Maple
A:= proc(n, k) option remember; uses combinat; add(binomial(n, j)*(-k)^j*bell(n-j), j=0..n) end: seq(seq(A(n, d-n), n=0..d), d=0..10); # second Maple program: b:= proc(n, m) option remember; `if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m)) end: A:= (n, k)-> b(n, -k): seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0, BellB[n], Sum[(-k)^j*Binomial[n,j]*BellB[n-j], {j,0,n}]]; A361781[n_, k_]= T[k, n-k]; Table[A361781[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 12 2024 *)
-
SageMath
def T(n,k): return sum( (-k)^j*binomial(n,j)*bell_number(n-j) for j in range(n+1)) def A361781(n, k): return T(k, n-k) flatten([[A361781(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 12 2024
Formula
E.g.f. of column k: exp(exp(x) - k*x - 1).
A(n,k) = Sum_{j=0..n} (-k)^j*binomial(n,j)*Bell(n-j).