A361801 Number of nonempty subsets of {1..n} with median n/2.
0, 0, 1, 1, 4, 4, 14, 14, 49, 49, 175, 175, 637, 637, 2353, 2353, 8788, 8788, 33098, 33098, 125476, 125476, 478192, 478192, 1830270, 1830270, 7030570, 7030570, 27088870, 27088870, 104647630, 104647630, 405187825, 405187825, 1571990935, 1571990935
Offset: 0
Examples
The subset {1,2,3,5} of {1..5} has median 5/2, so is counted under a(5). The subset {2,3,5} of {1..6} has median 6/2, so is counted under a(6). The a(0) = 0 through a(7) = 14 subsets: . . {1} {1,2} {2} {1,4} {3} {1,6} {1,3} {2,3} {1,5} {2,5} {1,2,3} {1,2,3,4} {2,4} {3,4} {1,2,4} {1,2,3,5} {1,3,4} {1,2,5,6} {1,3,5} {1,2,5,7} {1,3,6} {1,3,4,5} {2,3,4} {1,3,4,6} {2,3,5} {1,3,4,7} {2,3,6} {2,3,4,5} {1,2,4,5} {2,3,4,6} {1,2,4,6} {2,3,4,7} {1,2,3,4,5} {1,2,3,4,5,6} {1,2,3,4,6} {1,2,3,4,5,7} {1,2,3,5,6} {1,2,3,4,6,7}
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],Median[#]==n/2&]],{n,0,10}]
Formula
a(n) = A079309(floor(n/2)). - Alois P. Heinz, Apr 11 2023
Comments