A361851 Number of integer partitions of n such that (length) * (maximum) <= 2*n.
1, 2, 3, 5, 7, 11, 12, 18, 23, 31, 37, 51, 58, 75, 96, 116, 126, 184, 193, 253, 307, 346, 402, 511, 615, 678, 792, 1045, 1088, 1386, 1419, 1826, 2181, 2293, 2779, 3568, 3659, 3984, 4867, 5885, 6407, 7732, 8124, 9400, 11683, 13025, 13269, 16216, 17774, 22016
Offset: 1
Keywords
Examples
The a(1) = 1 through a(7) = 12 partitions: (1) (2) (3) (4) (5) (6) (7) (11) (21) (22) (32) (33) (43) (111) (31) (41) (42) (52) (211) (221) (51) (61) (1111) (311) (222) (322) (2111) (321) (331) (11111) (411) (421) (2211) (2221) (3111) (3211) (21111) (22111) (111111) (211111) (1111111) The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 <= 2*7, so y is counted under a(7). The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 is not <= 2*9, so y is not counted under a(9). The partition y = (3,2,1,1) has diagram: o o o o o . o . . o . . with complement of size 5, and 5 <= 7, so y is counted under a(7).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#<=2n&]],{n,30}]
Comments