A361853 Number of integer partitions of n such that (length) * (maximum) = 2n.
0, 0, 0, 0, 0, 2, 0, 1, 2, 4, 0, 10, 0, 8, 16, 10, 0, 31, 0, 44, 44, 20, 0, 92, 50, 28, 98, 154, 0, 266, 0, 154, 194, 48, 434, 712, 0, 60, 348, 910, 0, 1198, 0, 1120, 2138, 88, 0, 2428, 1300, 1680, 912, 2506, 0, 4808, 4800, 5968, 1372, 140, 0, 14820, 0, 160
Offset: 1
Keywords
Examples
The a(6) = 2 through a(12) = 10 partitions: (411) . (4211) (621) (5221) . (822) (3111) (321111) (5311) (831) (42211) (6222) (43111) (6321) (6411) (422211) (432111) (441111) (32211111) (33111111) The partition y = (6,4,1,1) has diagram: o o o o o o o o o o . . o . . . . . o . . . . . Since the partition and its complement (shown in dots) have the same size, y is counted under a(12).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Length[#]*Max@@#==2n&]],{n,30}]
Comments