A361872 Number of primitive practical numbers (PPNs)(A267124) between successive primorial numbers (A002110) where the PPNs q are in the range A002110(n-1) < q <= A002110(n).
1, 1, 3, 8, 108, 1107, 15788, 252603, 5121763
Offset: 1
Examples
a(4) = 8, because between successive primorials 30 and 210 (that includes 210) is the sequence {42, 66, 78, 88, 104, 140, 204, 210} of PPNs. It contains 8 members.
Links
- Wikipedia, Practical number and Primorial
Programs
-
Mathematica
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind=Position[fct[[;; , 1]]/(1+FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)])=={}; pracTestQ[fct_, k_] := Module[{f=fct}, f[[k, 2]]-= 1; pracQ[f]]; primPracQ[n_] := Module[{fct=FactorInteger[n]}, pracQ[fct]&&AllTrue[Range@Length[fct], fct[[#, 2]]==1||!pracTestQ[fct, #] &]]; pri[n_] := Module[{m}, If[n==1, 1, Product[Prime[m], {m, 1, n-1}]]]; plst=Join[{1}, Select[Range[2, 10^9, 2], primPracQ]]; pasc=<||>; Do[AppendTo[pasc, <|plst[[n]]->n|>], {n, 1, Length@plst}]; Table[pasc[pri[n+1]]-pasc[pri[n]], {n, 1, 9}]
-
PARI
f(n) = factorback(primes(n)); \\ A002110 a(n) = sum(k=f(n-1)+1, f(n), is_A267124(k)); \\ Michel Marcus, Mar 28 2023
Comments