A361883 a(n) = (1/n) * Sum_{k = 0..n} (n+2*k) * binomial(n+k-1,k)^3.
4, 98, 3550, 150722, 6993504, 343542572, 17560824138, 924397069250, 49770307114528, 2728028537409848, 151717661909940724, 8539838104822762220, 485583352521437530000, 27850592121190001279928, 1609345458428168657866050
Offset: 1
Programs
-
Maple
seq( (1/n)*add((n + 2*k) * binomial(n+k-1,k)^3, k = 0..n), n = 1..20);
-
Mathematica
Table[Sum[(3*n - 2*k) * Binomial[2*n-k-1, n-1]^3, {k,0,n}]/n, {n,1,20}] (* Vaclav Kotesovec, Mar 29 2023 *)
-
PARI
a(n) = (1/n) * sum(k = 0, n, (n+2*k) * binomial(n+k-1,k)^3); \\ Michel Marcus, Mar 30 2023
Formula
a(n) ~ 3 * 2^(6*n) / (7 * Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Mar 29 2023
Comments