A361883
a(n) = (1/n) * Sum_{k = 0..n} (n+2*k) * binomial(n+k-1,k)^3.
Original entry on oeis.org
4, 98, 3550, 150722, 6993504, 343542572, 17560824138, 924397069250, 49770307114528, 2728028537409848, 151717661909940724, 8539838104822762220, 485583352521437530000, 27850592121190001279928, 1609345458428168657866050
Offset: 1
-
seq( (1/n)*add((n + 2*k) * binomial(n+k-1,k)^3, k = 0..n), n = 1..20);
-
Table[Sum[(3*n - 2*k) * Binomial[2*n-k-1, n-1]^3, {k,0,n}]/n, {n,1,20}] (* Vaclav Kotesovec, Mar 29 2023 *)
-
a(n) = (1/n) * sum(k = 0, n, (n+2*k) * binomial(n+k-1,k)^3); \\ Michel Marcus, Mar 30 2023
A361885
a(n) = (1/n) * Sum_{k = 0..2*n} (n+2*k) * binomial(n+k-1,k)^3.
Original entry on oeis.org
9, 979, 165816, 33372819, 7380882509, 1732912534168, 424032181044264, 106952563532680339, 27609695174536836075, 7259294757681340436979, 1937215339689731617386000, 523352118643145676922317336, 142854011885066484369862826496, 39337931825265398967484384872560
Offset: 0
-
seq( (1/n)*add((n + 2*k) * binomial(n+k-1,k)^3, k = 0..2*n), n = 1..20);
-
Table[Sum[(n+2*k) * Binomial[n+k-1,k]^3, {k,0,2*n}]/n, {n,1,20}] (* Vaclav Kotesovec, Mar 29 2023 *)
-
a(n) = (1/n) * sum(k = 0, 2*n, (n+2*k) * binomial(n+k-1,k)^3); \\ Michel Marcus, Mar 30 2023
A361886
a(n) = (1/n) * Sum_{k = 0..2*n} (-1)^k * (n+2*k) * binomial(n+k-1,k)^3.
Original entry on oeis.org
3, 435, 79464, 16551315, 3732732003, 887492378136, 219081875199120, 55618197870142611, 14429522546341842225, 3808899907812064500435, 1019705941257612879722400, 276212555234100323977483800, 75563424471884688135891640224
Offset: 1
-
seq( (1/n)*add( (-1)^k * (n + 2*k) * binomial(n+k-1,k)^3, k = 0..2*n), n = 1..20);
-
Table[Sum[(-1)^k * (n+2*k) * Binomial[n+k-1,k]^3, {k,0,2*n}]/n, {n,1,20}] (* Vaclav Kotesovec, Mar 29 2023 *)
-
a(n) = (1/n) * sum(k = 0, 2*n, (-1)^k * (n+2*k) * binomial(n+k-1,k)^3); \\ Michel Marcus, Mar 30 2023
Showing 1-3 of 3 results.
Comments