A361885 a(n) = (1/n) * Sum_{k = 0..2*n} (n+2*k) * binomial(n+k-1,k)^3.
9, 979, 165816, 33372819, 7380882509, 1732912534168, 424032181044264, 106952563532680339, 27609695174536836075, 7259294757681340436979, 1937215339689731617386000, 523352118643145676922317336, 142854011885066484369862826496, 39337931825265398967484384872560
Offset: 0
Programs
-
Maple
seq( (1/n)*add((n + 2*k) * binomial(n+k-1,k)^3, k = 0..2*n), n = 1..20);
-
Mathematica
Table[Sum[(n+2*k) * Binomial[n+k-1,k]^3, {k,0,2*n}]/n, {n,1,20}] (* Vaclav Kotesovec, Mar 29 2023 *)
-
PARI
a(n) = (1/n) * sum(k = 0, 2*n, (n+2*k) * binomial(n+k-1,k)^3); \\ Michel Marcus, Mar 30 2023
Formula
a(n) ~ 5 * 3^(9*n + 3/2) / (19 * Pi^(3/2) * n^(3/2) * 2^(6*n + 3)). - Vaclav Kotesovec, Mar 29 2023
Comments