A361886 a(n) = (1/n) * Sum_{k = 0..2*n} (-1)^k * (n+2*k) * binomial(n+k-1,k)^3.
3, 435, 79464, 16551315, 3732732003, 887492378136, 219081875199120, 55618197870142611, 14429522546341842225, 3808899907812064500435, 1019705941257612879722400, 276212555234100323977483800, 75563424471884688135891640224
Offset: 1
Programs
-
Maple
seq( (1/n)*add( (-1)^k * (n + 2*k) * binomial(n+k-1,k)^3, k = 0..2*n), n = 1..20);
-
Mathematica
Table[Sum[(-1)^k * (n+2*k) * Binomial[n+k-1,k]^3, {k,0,2*n}]/n, {n,1,20}] (* Vaclav Kotesovec, Mar 29 2023 *)
-
PARI
a(n) = (1/n) * sum(k = 0, 2*n, (-1)^k * (n+2*k) * binomial(n+k-1,k)^3); \\ Michel Marcus, Mar 30 2023
Formula
a(n) ~ 3^(9*n + 3/2) / (7 * Pi^(3/2) * n^(3/2) * 2^(6*n + 3)). - Vaclav Kotesovec, Mar 29 2023
Comments