A361888 a(n) = S(5,n)/S(1,n), where S(r,n) = Sum_{k = 0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
1, 1, 1, 11, 46, 415, 3265, 30955, 299500, 3173626, 33576266, 386672861, 4340714886, 52846226091, 620906440961, 7857161332715, 95704821415240, 1246162831674580, 15624127945644100, 207990691516965886, 2669841775757784796, 36176886727828945286, 473508685502539872586
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..840
- H. W. Gould, Problem E2384, Amer. Math. Monthly, 81 (1974), 170-171.
Crossrefs
Programs
-
Maple
seq(add( ( binomial(n,k) - binomial(n,k-1) )^5/binomial(n,floor(n/2)), k = 0..floor(n/2)), n = 0..20);
-
Mathematica
Table[Sum[(Binomial[n, k]-Binomial[n, k-1])^5/Binomial[n, Floor[n/2]], {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 24 2025 *)
-
PARI
s(r, n) = sum(k=0, n\2, (binomial(n, k)-binomial(n, k-1))^r); a(n) = s(5, n)/s(1, n); \\ Seiichi Manyama, Mar 24 2025
Formula
a(n) = 1/binomial(n,floor(n/2)) * Sum_{k = 0..floor(n/2)} ( (n - 2*k + 1)/(n - k + 1) * binomial(n,k) )^5.
a(n) ~ 2^(4*n + 9) / (125 * Pi^2 * n^4). - Vaclav Kotesovec, Mar 24 2025
Comments