A361997 Records in A361902.
3, 4, 5, 9, 12, 15, 24, 1470, 3873, 25224
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
For n = 17, the least k such that 17*F(k)+1 is prime is k = 6, with 17*F(6)+1 = 17*8+1 = 137, so a(17) = 6.
Array[(k = 1; While[! PrimeQ[# Fibonacci[k] + 1], k++]; k) &, 85] (* Michael De Vlieger, Jun 10 2023 *)
a(n) = my(k=1); while(!isprime(n*fibonacci(k)+1), k++); k; \\ Michel Marcus, Jun 10 2023
from sympy import isprime, fibonacci from itertools import count def A363533(n): # Note: the function hangs if a(n) = -1. return next(k for k in count(1) if isprime(n*fibonacci(k)+1))
with(combinat): a:=[]; b:=[]; for n from 0 to 25 do k:=0; t1:=fibonacci(n); while not isprime( fibonacci(k)+t1) do k:=k+1; od: a:=[op(a),fibonacci(k)]; b:=[op(b),k]; od: a; # A361509 b; # A361510
a[n_] := Module[{fn = Fibonacci[n], k = 0}, While[! PrimeQ[fn + Fibonacci[k]], k++]; Fibonacci[k]]; Array[a, 26, 0] (* Amiram Eldar, Mar 30 2023 *)
a(n) = my(k=0, fn=fibonacci(n)); while (!isprime(fn+fibonacci(k)), k++); fibonacci(k); \\ Michel Marcus, Mar 30 2023
See A361509.
a[n_] := Module[{fn = Fibonacci[n], k = 0}, While[! PrimeQ[fn + Fibonacci[k]], k++]; k]; Array[a, 26, 0] (* Amiram Eldar, Mar 30 2023 *)
a(n) = my(k=0, fn=fibonacci(n)); while (!isprime(fn+fibonacci(k)), k++); k; \\ Michel Marcus, Mar 30 2023
Comments