cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A361924 Numbers whose infinitary divisors have distinct values of the infinitary totient function iphi (A091732).

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 25, 27, 28, 29, 31, 33, 35, 36, 37, 39, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 83, 85, 87, 89, 91, 92, 93, 95, 97, 99, 100, 101
Offset: 1

Views

Author

Amiram Eldar, Mar 30 2023

Keywords

Comments

First differs from A003159 at n = 57.
Numbers k such that A361923(k) = A037445(k).
Since Sum_{d infinitary divisor of k} iphi(d) = k, these are numbers k such that the multiset {iphi(d) | d infinitary divisor of k} is a partition of k into distinct parts.
Includes all the odd prime powers (A061345) and all the powers of 4 (A000302).
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 6, 66, 651, 6497, 64894, 648641, 6485605, 64851632, 648506213, 6485025363, ... . Apparently, this sequence has an asymptotic density 0.6485...

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@ IntegerDigits[e, 2], 1]));
    iphi[1] = 1; iphi[n_] := Times @@ (Flatten@ (f @@@ FactorInteger[n]) - 1);
    idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]; idivs[1] = {1};
    q[n_] := Length @ Union[iphi /@ (d = idivs[n])] == Length[d]; Select[Range[100], q]
  • PARI
    iphi(n) = {my(f=factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) - 1, 1)))}
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    idivs(n) = {my(d = divisors(n), f = factor(n), idiv = []); for (k=1, #d, if(isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    is(k) = {my(d = idivs(k)); #Set(apply(x->iphi(x), d)) == #d;}
Showing 1-1 of 1 results.