A361956 Triangle read by rows: T(n,k) is the number of labeled tiered posets with n elements and height k.
1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 50, 36, 24, 0, 1, 510, 510, 240, 120, 0, 1, 7682, 10620, 4800, 1800, 720, 0, 1, 161406, 312606, 136920, 47040, 15120, 5040, 0, 1, 4747010, 13439076, 5630184, 1678320, 493920, 141120, 40320, 0, 1, 194342910, 821218110, 319384800, 83963880, 21137760, 5594400, 1451520, 362880
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 2; 0, 1, 6, 6; 0, 1, 50, 36, 24; 0, 1, 510, 510, 240, 120; 0, 1, 7682, 10620, 4800, 1800, 720; 0, 1, 161406, 312606, 136920, 47040, 15120, 5040; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50).
Crossrefs
Programs
-
PARI
S(M)={my(N=matrix(#M-1, #M-1, i, j, sum(k=1, i-j+1, (2^j-1)^k*M[i-j+1, k])/j!)); for(i=1, #N, for(j=1, i, N[i,j] -= sum(k=1, j-1, N[i-k, j-k]/k!))); N} C(n)={my(M=matrix(n+1,n+1), R=M); M[1,1]=R[1,1]=1; for(h=1, n, M=S(M); for(i=h, n, R[i+1,h+1] = i!*vecsum(M[i-h+1,]))); R} { my(A=C(7)); for(i=1, #A, print(A[i, 1..i])) }
Comments