cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A362212 a(n) is the unique solution to A047994(x) = A361969(n).

Original entry on oeis.org

4, 8, 24, 16, 32, 76, 96, 64, 128, 184, 236, 216, 224, 316, 332, 384, 256, 344, 552, 428, 376, 424, 472, 556, 544, 768, 512, 692, 716, 608, 664, 796, 1128, 892, 908, 896, 1076, 864, 1416, 1132, 944, 1268, 1536, 1024, 1372, 1192, 1436, 1468, 1532, 1992, 1556, 1384
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2023

Keywords

Comments

Are all the terms divisible by 4?

Crossrefs

Similar sequences: A131826, A362211.

Programs

  • Mathematica
    invUPhi[#][[1]]& /@ Select[Range[1250], Length[invUPhi[#]] == 1 &] (* using the function invUPhi from A361966 *)

Formula

a(n) = A135347(A361969(n)).
A047994(a(n)) = A361969(n).

A361966 Irregular table read by rows in which the n-th row consists of all the numbers m such that uphi(m) = n, where uphi is the unitary totient function (A047994).

Original entry on oeis.org

1, 2, 3, 6, 4, 5, 10, 7, 12, 14, 8, 9, 15, 18, 30, 11, 22, 13, 20, 21, 26, 42, 24, 16, 17, 34, 19, 28, 38, 33, 66, 23, 46, 25, 35, 36, 39, 50, 60, 70, 78, 27, 54, 29, 40, 58, 31, 44, 48, 62, 32, 45, 51, 90, 102, 37, 52, 57, 74, 84, 114, 41, 55, 82, 110, 43, 56, 86
Offset: 1

Views

Author

Amiram Eldar, Apr 01 2023

Keywords

Examples

			The table begins:
  n   n-th row
  --  --------
   1  1, 2;
   2  3, 6;
   3  4;
   4  5, 10;
   5
   6  7, 12, 14;
   7  8;
   8  9, 15, 18, 30;
   9
  10  11, 22;
  11
  12  13, 20, 21, 26, 42;
		

Crossrefs

The unitary version of A032447.

Programs

  • Mathematica
    invUPhi[n_] := Module[{fct = f[n], sol}, sol = Times @@@ (1 + Select[fct, UnsameQ @@ # && (Length[#] == 1 || CoprimeQ @@ (# + 1)) && Times @@ PrimeNu[# + 1] == 1 &]); Sort@ Join[sol, 2*Select[sol, OddQ]]]; invUPhi[1] = {1, 2}; Table[invUPhi[n], {n, 1, 50}] // Flatten (* using the function f by T. D. Noe at A162247 *)

A361967 Number of numbers k such that uphi(k) = n, where uphi is the unitary totient function (A047994).

Original entry on oeis.org

2, 2, 1, 2, 0, 3, 1, 4, 0, 2, 0, 5, 0, 1, 1, 2, 0, 3, 0, 2, 0, 2, 0, 8, 0, 2, 0, 3, 0, 4, 1, 4, 0, 0, 0, 6, 0, 0, 0, 4, 0, 3, 0, 2, 0, 2, 0, 11, 0, 0, 0, 2, 0, 1, 0, 4, 0, 2, 0, 8, 0, 1, 1, 2, 0, 3, 0, 0, 0, 3, 0, 11, 0, 0, 0, 0, 0, 3, 0, 8, 0, 2, 0, 5, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Apr 01 2023

Keywords

Crossrefs

Row lengths of A361966.
The unitary version of A014197.
Cf. A047994, A135347, A327837, A347771 (positions of 0's), A361966, A361968 (indices of records), A361969 (positions of 1's), A361970, A361971 (record values).

Programs

  • Mathematica
    a[n_] := Length[invUPhi[n]]; Array[a, 100] (* using the function invUPhi from A361966 *)

Formula

a(A347771(n)) = 0.
a(A361969(n)) = 1.
a(A361970(n)) = n.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A327837. - Amiram Eldar, Dec 24 2024

A361968 Unitary highly totient numbers: numbers k that have more solutions x to the equation uphi(x) = k than any smaller k, where uphi is the unitary totient function (A047994).

Original entry on oeis.org

1, 6, 8, 12, 24, 48, 96, 120, 144, 240, 480, 576, 720, 1440, 2880, 4320, 5760, 8640, 10080, 17280, 20160, 30240, 34560, 40320, 60480, 80640, 120960, 241920, 362880, 483840, 725760, 967680, 1209600, 1451520, 2177280, 2419200, 2903040, 3628800, 4354560, 4838400
Offset: 1

Views

Author

Amiram Eldar, Apr 01 2023

Keywords

Comments

Indices of records of A361967.
The corresponding numbers of solutions are 2, 3, 4, 5, 8, 11, ... (A361971).

Crossrefs

The unitary version of A097942.

Programs

  • Mathematica
    solnum[n_] :=  Length[invUPhi[n]]; seq[kmax_] := Module[{s = {}, solmax=0}, Do[sol = solnum[k]; If[sol > solmax, solmax = sol; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^5] (* using the function invUPhi from A361966 *)

A361970 a(n) is the least number k such that the equation uphi(x) = k has exactly n solutions, or -1 if no such k exists, where uphi is the unitary totient function (A047994).

Original entry on oeis.org

5, 1, 2, 6, 8, 12, 36, 156, 24, 552, 168, 48, 96, 420, 120, 192, 3264, 144, 384, 336, 1536, 288, 360, 240, 672, 1200, 3888, 1080, 4896, 1584, 480, 576, 7056, 4992, 864, 1872, 1152, 3120, 960, 2400, 720, 2520, 30960, 2688, 19968, 1680, 1728, 1920, 2016, 2304, 12000
Offset: 0

Views

Author

Amiram Eldar, Apr 01 2023

Keywords

Comments

Is there any n for which a(n) = -1?

Crossrefs

The unitary version of A007374.

Programs

  • Mathematica
    solnum[n_] :=  Length[invUPhi[n]]; seq[len_, kmax_] := Module[{s = Table[-1, {len}], c = 0, k = 1, ind}, While[k < kmax && c < len, ind = solnum[k] + 1; If[ind <= len && s[[ind]] < 0, c++; s[[ind]] = k]; k++]; s]; seq[50, 10^5] (* using the function invUPhi from A361966 *)

Formula

A361967(a(n)) = n.

A362185 Numbers k with a single solution x to the equation A323410(x) = k.

Original entry on oeis.org

0, 4, 7, 9, 11, 216, 218, 220, 546, 652, 666, 700, 834, 850, 906, 924, 996, 1242, 1386, 1476, 1506, 1516, 1596, 1646, 1662, 1758, 1770, 1858, 1890, 1900, 1946, 2046, 2170, 2262, 2352, 2422, 2578, 2626, 2668, 2682, 2814, 2842, 2980, 2992, 3010, 3048, 3100, 3154
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2023

Keywords

Comments

Numbers k such that A362181(k) = 1.

Examples

			0 is a term since there is only one solution, x = 1, to A323410(x) = 0.
		

Crossrefs

The unitary version of A131825.
Similar sequence: A361969.

Programs

  • Mathematica
    ucototient[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); ucototient[1] = 0; With[{max = 300}, solnum = Table[0, {n, 1, max}]; Do[If[(i = ucototient[k]) <= max, solnum[[i]]++], {k, 2, max^2}]; Join[{0}, Position[solnum, 1] // Flatten]]

A362664 Numbers k with exactly two solutions x to the equation iphi(x) = k, where iphi is the infinitary totient function A091732.

Original entry on oeis.org

1, 2, 3, 4, 10, 15, 20, 22, 28, 42, 44, 45, 46, 52, 54, 56, 58, 70, 78, 82, 92, 100, 102, 104, 106, 116, 130, 136, 140, 148, 162, 164, 166, 172, 174, 178, 184, 190, 196, 200, 204, 208, 212, 220, 222, 226, 228, 234, 238, 246, 250, 255, 260, 262, 268, 272, 282, 292, 296
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2023

Keywords

Comments

Numbers k such that A362485(k) = 2.
There are no numbers k with a single solution to iphi(x) = k, because if iphi(x) = k, and A007814(x) is even, then 2*x is also a solution, i.e., iphi(2*x) = k.

Crossrefs

Similar sequences: A361969, A362185.

Programs

  • Mathematica
    Select[Range[300], Length[invIPhi[#]] == 2 &] (* using the function invIPhi from A362484 *)
Showing 1-7 of 7 results.