cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A361966 Irregular table read by rows in which the n-th row consists of all the numbers m such that uphi(m) = n, where uphi is the unitary totient function (A047994).

Original entry on oeis.org

1, 2, 3, 6, 4, 5, 10, 7, 12, 14, 8, 9, 15, 18, 30, 11, 22, 13, 20, 21, 26, 42, 24, 16, 17, 34, 19, 28, 38, 33, 66, 23, 46, 25, 35, 36, 39, 50, 60, 70, 78, 27, 54, 29, 40, 58, 31, 44, 48, 62, 32, 45, 51, 90, 102, 37, 52, 57, 74, 84, 114, 41, 55, 82, 110, 43, 56, 86
Offset: 1

Views

Author

Amiram Eldar, Apr 01 2023

Keywords

Examples

			The table begins:
  n   n-th row
  --  --------
   1  1, 2;
   2  3, 6;
   3  4;
   4  5, 10;
   5
   6  7, 12, 14;
   7  8;
   8  9, 15, 18, 30;
   9
  10  11, 22;
  11
  12  13, 20, 21, 26, 42;
		

Crossrefs

The unitary version of A032447.

Programs

  • Mathematica
    invUPhi[n_] := Module[{fct = f[n], sol}, sol = Times @@@ (1 + Select[fct, UnsameQ @@ # && (Length[#] == 1 || CoprimeQ @@ (# + 1)) && Times @@ PrimeNu[# + 1] == 1 &]); Sort@ Join[sol, 2*Select[sol, OddQ]]]; invUPhi[1] = {1, 2}; Table[invUPhi[n], {n, 1, 50}] // Flatten (* using the function f by T. D. Noe at A162247 *)

A361967 Number of numbers k such that uphi(k) = n, where uphi is the unitary totient function (A047994).

Original entry on oeis.org

2, 2, 1, 2, 0, 3, 1, 4, 0, 2, 0, 5, 0, 1, 1, 2, 0, 3, 0, 2, 0, 2, 0, 8, 0, 2, 0, 3, 0, 4, 1, 4, 0, 0, 0, 6, 0, 0, 0, 4, 0, 3, 0, 2, 0, 2, 0, 11, 0, 0, 0, 2, 0, 1, 0, 4, 0, 2, 0, 8, 0, 1, 1, 2, 0, 3, 0, 0, 0, 3, 0, 11, 0, 0, 0, 0, 0, 3, 0, 8, 0, 2, 0, 5, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Apr 01 2023

Keywords

Crossrefs

Row lengths of A361966.
The unitary version of A014197.
Cf. A047994, A135347, A327837, A347771 (positions of 0's), A361966, A361968 (indices of records), A361969 (positions of 1's), A361970, A361971 (record values).

Programs

  • Mathematica
    a[n_] := Length[invUPhi[n]]; Array[a, 100] (* using the function invUPhi from A361966 *)

Formula

a(A347771(n)) = 0.
a(A361969(n)) = 1.
a(A361970(n)) = n.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A327837. - Amiram Eldar, Dec 24 2024

A361968 Unitary highly totient numbers: numbers k that have more solutions x to the equation uphi(x) = k than any smaller k, where uphi is the unitary totient function (A047994).

Original entry on oeis.org

1, 6, 8, 12, 24, 48, 96, 120, 144, 240, 480, 576, 720, 1440, 2880, 4320, 5760, 8640, 10080, 17280, 20160, 30240, 34560, 40320, 60480, 80640, 120960, 241920, 362880, 483840, 725760, 967680, 1209600, 1451520, 2177280, 2419200, 2903040, 3628800, 4354560, 4838400
Offset: 1

Views

Author

Amiram Eldar, Apr 01 2023

Keywords

Comments

Indices of records of A361967.
The corresponding numbers of solutions are 2, 3, 4, 5, 8, 11, ... (A361971).

Crossrefs

The unitary version of A097942.

Programs

  • Mathematica
    solnum[n_] :=  Length[invUPhi[n]]; seq[kmax_] := Module[{s = {}, solmax=0}, Do[sol = solnum[k]; If[sol > solmax, solmax = sol; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^5] (* using the function invUPhi from A361966 *)

A361969 Numbers k with a single solution x to the equation uphi(x) = k, where uphi is the unitary totient function (A047994).

Original entry on oeis.org

3, 7, 14, 15, 31, 54, 62, 63, 127, 154, 174, 182, 186, 234, 246, 254, 255, 294, 308, 318, 322, 364, 406, 414, 496, 510, 511, 516, 534, 558, 574, 594, 644, 666, 678, 762, 804, 806, 812, 846, 870, 948, 1022, 1023, 1026, 1036, 1074, 1098, 1146, 1148, 1164, 1204, 1246
Offset: 1

Views

Author

Amiram Eldar, Apr 01 2023

Keywords

Comments

Numbers k such that A361967(k) = 1.
According to Carmichael's totient function conjecture, there are no numbers with a single solution x to the corresponding equation phi(x) = k, with Euler's totient function (A000010).
A000225(m) = 2^m - 1 is a term for all m >= 2. These are the only odd terms.

Crossrefs

Programs

  • Mathematica
    Select[Range[1250], Length[invUPhi[#]] == 1 &] (* using the function invUPhi from A361966 *)

A362186 a(n) is the least number k such that the equation A323410(x) = k has exactly n solutions, or -1 if no such k exists.

Original entry on oeis.org

2, 0, 6, 10, 20, 31, 47, 53, 65, 77, 89, 113, 125, 119, 149, 173, 167, 179, 233, 279, 239, 209, 439, 293, 365, 299, 329, 359, 455, 521, 467, 389, 461, 419, 479, 773, 539, 509, 599, 845, 671, 791, 749, 719, 659, 629, 809, 1055, 881, 779, 899, 965, 929, 1121, 839, 1403
Offset: 0

Views

Author

Amiram Eldar, Apr 10 2023

Keywords

Comments

Is there any n for which a(n) = -1?

Crossrefs

The unitary version of A063507.
Similar sequences: A007374, A361970.

Programs

  • Mathematica
    ucototient[n_] := n - Times @@ (Power @@@ FactorInteger[n] - 1); ucototient[1] = 0; With[{max = 300}, solnum = Table[0, {n, 1, max}]; Do[If[(i = ucototient[k]) <= max, solnum[[i]]++], {k, 2, max^2}]; Join[{2, 0}, TakeWhile[FirstPosition[ solnum, #] & /@ Range[2, max] // Flatten, NumberQ]]]

Formula

A362181(a(n)) = n.

A362489 a(n) is the least number k such that the equation iphi(x) = k has exactly 2*n solutions, or -1 if no such k exists, where iphi is the infinitary totient function A091732.

Original entry on oeis.org

5, 1, 6, 12, 36, 24, 396, 48, 216, 96, 528, 144, 384, 2784, 432, 240, 1296, 288, 1584, 1800, 480, 1680, 1080, 864, 576, 3240, 2016, 960, 6624, 720, 1152, 7776, 12000, 8448, 5280, 1728, 10752, 2304, 4032, 4800, 6048, 3840, 2160, 5184, 4608, 6336, 1440, 10560, 29568
Offset: 0

Views

Author

Amiram Eldar, Apr 22 2023

Keywords

Comments

a(n) is the least number k such that A362485(k) = 2*n. Odd values of A362485 are impossible.
Is there any n for which a(n) = -1?

Crossrefs

Similar sequences: A007374, A063507, A361970, A362186.

Programs

  • Mathematica
    solnum[n_] := Length[invIPhi[n]]; seq[len_, kmax_] := Module[{s = Table[-1, {len}], c = 0, k = 1, ind}, While[k < kmax && c < len, ind = solnum[k]/2 + 1; If[ind <= len && s[[ind]] < 0, c++; s[[ind]] = k]; k++]; s]; seq[50, 10^5] (* using the function invIPhi from A362484 *)
Showing 1-6 of 6 results.