cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362013 Triangular array read by rows. T(n,k) is the number of labeled directed graphs on [n] with exactly k strongly connected components of size 1 with outdegree zero, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 27, 27, 9, 1, 2401, 1372, 294, 28, 1, 759375, 253125, 33750, 2250, 75, 1, 887503681, 171774906, 13852815, 595820, 14415, 186, 1, 3938980639167, 437664515463, 20841167403, 551353635, 8751645, 83349, 441, 1, 67675234241018881, 4263006881324024, 117484441611292, 1850148686792, 18210124870, 114709448, 451612, 1016, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 03 2023

Keywords

Examples

			Triangle T(n,k) begins:
       1;
       0,      1;
       1,      2,     1;
      27,     27,     9,    1;
    2401,   1372,   294,   28,  1;
  759375, 253125, 33750, 2250, 75, 1;
  ...
		

Crossrefs

Cf. A086206 (column k=0), A053763 (row sums), A361592, A350792 (a subclass of the digraphs for the case k=1 of this sequence), A003028.

Programs

  • Mathematica
    nn = 6; B[n_] := n! 2^Binomial[n, 2] ; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[z_] := Total[strong Table[z^i/i!, {i, 1, 58}]];
    ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /.Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}]; Table[ Take[(Table[B[n], {n, 0, nn}] CoefficientList[   Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-s[z]]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}]