A362036 The prime indices of A362034.
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 7, 5, 1, 1, 6, 10, 10, 6, 1, 1, 7, 14, 17, 14, 7, 1, 1, 8, 18, 27, 27, 18, 8, 1, 1, 9, 23, 39, 47, 39, 23, 9, 1, 1, 10, 28, 54, 75, 75, 54, 28, 10, 1, 1, 11, 33, 72, 115, 135, 115, 72, 33, 11, 1, 1, 12, 40, 95, 167, 222, 222, 167, 95, 40, 12, 1
Offset: 0
Examples
Triangle begins: k=0 1 2 3 4 n=0: 1; n=1: 1, 1; n=2: 1, 3, 1; n=3: 1, 4, 4, 1; n=4: 1, 5, 7, 5, 1; n=5: ...
Programs
-
Mathematica
T[n_, 0] := T[n, n] = 2; T[n_, k_] := T[n, k] = NextPrime[T[n - 1, k - 1] + T[n - 1, k] - 1]; Table[PrimePi@ T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 06 2023 *)
-
PARI
t(n,k) = if (n==0, 2, if (k==0, 2, if (k==n, 2, nextprime(t(n-1,k-1) + t(n-1,k))))); \\ A362034 T(n,k) = primepi(t(n,k)); \\ Michel Marcus, Apr 07 2023