cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362036 The prime indices of A362034.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 7, 5, 1, 1, 6, 10, 10, 6, 1, 1, 7, 14, 17, 14, 7, 1, 1, 8, 18, 27, 27, 18, 8, 1, 1, 9, 23, 39, 47, 39, 23, 9, 1, 1, 10, 28, 54, 75, 75, 54, 28, 10, 1, 1, 11, 33, 72, 115, 135, 115, 72, 33, 11, 1, 1, 12, 40, 95, 167, 222, 222, 167, 95, 40, 12, 1
Offset: 0

Views

Author

Jack Braxton, Apr 05 2023

Keywords

Examples

			Triangle begins:
      k=0  1  2  3  4
  n=0:  1;
  n=1:  1, 1;
  n=2:  1, 3, 1;
  n=3:  1, 4, 4, 1;
  n=4:  1, 5, 7, 5, 1;
  n=5:  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, 0] := T[n, n] = 2; T[n_, k_] := T[n, k] = NextPrime[T[n - 1, k - 1] + T[n - 1, k] - 1]; Table[PrimePi@ T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 06 2023 *)
  • PARI
    t(n,k) = if (n==0, 2, if (k==0, 2, if (k==n, 2, nextprime(t(n-1,k-1) + t(n-1,k))))); \\ A362034
    T(n,k) = primepi(t(n,k)); \\ Michel Marcus, Apr 07 2023

Formula

T(n,k) = A000720(A362034(n,k)).