cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A363041 Triangle read by rows: T(n,k) = Stirling2(n+1,k)/binomial(k+1,2) if n-k is even, else 0 (1 <= k <= n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 5, 0, 1, 1, 0, 15, 0, 1, 0, 21, 0, 35, 0, 1, 1, 0, 161, 0, 70, 0, 1, 0, 85, 0, 777, 0, 126, 0, 1, 1, 0, 1555, 0, 2835, 0, 210, 0, 1, 0, 341, 0, 14575, 0, 8547, 0, 330, 0, 1, 1, 0, 14421, 0, 91960, 0, 22407, 0, 495, 0, 1
Offset: 1

Views

Author

Peter Bala, May 14 2023

Keywords

Comments

A companion triangle to the triangle of Hultman numbers A164652.
The triangle of Hultman numbers can be constructed from the triangle of Stirling cycle numbers ( |A008275(n,k)| )n,k>=1 by removing the triangular number factor n*(n-1)/2 from every other entry in the n-th row (n >= 2) and setting the remaining entries to 0.
Here we carry out the analogous construction starting with the triangle of Stirling numbers of the second kind A008277, but now removing the triangular number factor k*(k+1)/2 from every other entry in the k-th column and setting the remaining entries to 0.
Do these numbers have a combinatorial interpretation?

Examples

			Triangle begins
     k = 1     2     3     4     5     6     7     8     9    10
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
n = 1:   1
    2:   0     1
    3:   1     0     1
    4:   0     5     0     1
    5:   1     0    15     0     1
    6:   0    21     0    35     0     1
    7:   1     0   161     0    70     0     1
    8:   0    85     0   777     0   126     0     1
    9:   1     0  1555     0  2835     0   210     0     1
   10:   0   341     0 14575     0  8547     0   330     0     1
   ...
Matrix product (|A008275|)^-1 * A164652 * A008277 begins
  / 1             \ /1         \ /1           \   /1           \
  |-1   1         | |0 1       | |1  1        |   |0 1         |
  | 1  -3  1      | |1 0  1    | |1  3  1     | = |0 0 1       |
  |-1   7 -6   1  | |0 5  0 1  | |1  7  6  1  |   |0 1 0  1    |
  | 1 -15 25 -10 1| |8 0 15 0 1| |1 15 25 10 1|   |0 0 5  0 1  |
  | ...           | |...       | |...         |   |0 1 0 15 0 1|
  |               | |          | |            |   |...         |
		

Crossrefs

Row sums give A363042.

Programs

  • Maple
    A362041:= (n, k)-> `if`(n-k mod 2 = 0, Stirling2(n+1,k)/binomial(k+1,2), 0):
    for n from 1 to 10 do seq(A362041(n,k), k = 1..n) od;
  • PARI
    T(n,k) = if ((n-k) % 2, 0, stirling(n+1, k, 2)/binomial(k+1, 2)); \\ Michel Marcus, May 23 2023

Formula

Let P(n,x) = (1 - x)*(1 - 2*x)*...*(1 - n*x). The g.f. for the k-th column of the triangle is (1/(k*(k + 1)))*x^(k-1)*(1/P(k,x) - 1/P(k,-x)) = (x^k)*(x^k*R(k-1,1/x))/((1 - x^2)*(1 - 4*x^2)*...*(1 - k^2*x^2)), where R(n,x) denotes the n-th row polynomial of A164652. (Since the entries of triangle A164652 are integers, it follows that the entries of the present triangle are also integers.)
It appears that the matrix product (|A008275|)^-1 * A164652 * A008277 = I_1 + A363041 (direct sum, where I_1 is the 1 X 1 identity matrix). See the Example section.
The sequence of row sums of the inverse array begins [1, 1, 0, -4, 0, 120, 0, -12096, 0, 3024000, 0, -1576143360, 0, 1525620096000, 0, -2522591034163200, 0, 6686974460694528000, 0, -27033456071346536448000, ...], and appears to be essentially A129825.

A362844 a(n) is the largest k < A360768(n) such that rad(k) = rad(A360768(n)) and n mod k != 0, where rad(n) = A007947(n).

Original entry on oeis.org

12, 18, 24, 36, 40, 48, 54, 45, 50, 60, 72, 56, 80, 96, 98, 90, 84, 75, 108, 63, 120, 100, 144, 126, 150, 147, 162, 112, 132, 160, 192, 196, 135, 156, 180, 176, 175, 200, 168, 198, 240, 216, 252, 270, 204, 234, 250, 288, 294, 208, 228, 280, 242, 300, 297, 225, 336, 324, 224, 264, 320, 375, 306, 276
Offset: 1

Views

Author

Michael De Vlieger, May 19 2023

Keywords

Comments

Largest nondivisor less than m = A360768(n) that shares the same squarefree kernel as m.
a(n) is in A126706, not a permutation of A126706.

Examples

			A360768(1) = 18; the smallest nondivisor k < 18 such that rad(k) = rad(18) = 6 is a(1) = 12.
A360768(2) = 24; the smallest nondivisor k < 24 such that rad(k) = rad(24) = 6 is a(2) = 18.
A360768(5) = 50; the smallest nondivisor k < 50 such that rad(k) = rad(50) = 10 is a(5) = 40.
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; s = Select[Select[Range[414],  Nor[SquareFreeQ[#], PrimePowerQ[#]] &], #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]; Table[Function[r, SelectFirst[Range[m - 1, 1, -1], r == rad[#] &] ][rad[m]], {m, s}]
Showing 1-2 of 2 results.