cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362154 Expansion of 1/(1 + x * sqrt(1-4*x)).

Original entry on oeis.org

1, -1, 3, -3, 11, -5, 51, 35, 335, 689, 3055, 9073, 33891, 114425, 413623, 1464661, 5304803, 19199859, 70161499, 257270227, 948639463, 3511150611, 13047799395, 48649126799, 181968324231, 682577156519, 2567180111683, 9678596662499, 36571577629911
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1+x*sqrt(1-4*x)))

Formula

a(n) = (-1)^n * Sum_{k=0..n} 4^k * binomial((n-k)/2,k).

A372013 G.f. A(x) satisfies A(x) = 1/( 1 + x*(1 - 9*x*A(x))^(1/3) ).

Original entry on oeis.org

1, -1, 4, -1, 46, 149, 1351, 8441, 63499, 462752, 3514807, 26923478, 209566927, 1647633779, 13079663527, 104649229988, 843120766711, 6833665175513, 55683581174641, 455878084448132, 3748025535972448, 30931714278955736, 256150668109462507
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^n*sum(k=0, n, 9^(n-k)*binomial(n, k)*binomial(k/3, n-k)/(n-k+1));

Formula

a(n) = (-1)^n * Sum_{k=0..n} 9^(n-k) * binomial(n,k) * binomial(k/3,n-k)/(n-k+1).
Showing 1-2 of 2 results.