cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A372126 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)*(1 + 9*x*A(x))^(1/3) ).

Original entry on oeis.org

1, 1, 5, 11, 95, 150, 2688, -111, 98489, -215578, 4416842, -18887063, 230670421, -1356589436, 13381147908, -92724422022, 831047516316, -6277471705749, 53925750947589, -426682784513559, 3602138266461603, -29250145766625450, 245524688963062050
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 9^(n-k)*binomial(n+k, k)*binomial(k/3, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 9^(n-k) * binomial(n+k,k) * binomial(k/3,n-k).
From Seiichi Manyama, Nov 30 2024: (Start)
G.f.: exp( Sum_{k>=1} A378555(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x*(1 + 9*x)^(1/3))^(n+1).
G.f.: (1/x) * Series_Reversion( x*(1 - x*(1 + 9*x)^(1/3)) ). (End)

A372012 G.f. A(x) satisfies A(x) = 1/( 1 + x*(1 - 4*x*A(x))^(1/2) ).

Original entry on oeis.org

1, -1, 3, -5, 17, -31, 119, -211, 937, -1483, 8015, -10187, 73369, -62193, 713907, -234857, 7358657, 1881661, 80117735, 69295469, 917837521, 1334044075, 11006114883, 21830065899, 137275956089, 333858963899, 1769128762419, 4940496514271, 23409778504937
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^n*sum(k=0, n, 4^(n-k)*binomial(n, k)*binomial(k/2, n-k)/(n-k+1));

Formula

a(n) = (-1)^n * Sum_{k=0..n} 4^(n-k) * binomial(n,k) * binomial(k/2,n-k)/(n-k+1).

A372136 G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^2*(1 + 9*x*A(x))^(1/3) ).

Original entry on oeis.org

1, 1, 6, 24, 199, 1023, 9363, 53724, 514422, 3147234, 30860724, 197222004, 1959430572, 12936907792, 129445924524, 877093068720, 8806256385699, 60967636162677, 612785441368254, 4321431024295452, 43413113117835945, 311142782601086949, 3120889714454477613
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 9^(n-k)*binomial(n+2*k, k)*binomial(k/3, n-k)/(n+k+1));

Formula

a(n) = Sum_{k=0..n} 9^(n-k) * binomial(n+2*k,k) * binomial(k/3,n-k)/(n+k+1).
Showing 1-3 of 3 results.